Integration & Aggregation in Risk Management: An Insurance Perspective

Stephen Mildenhall Aon Re Services

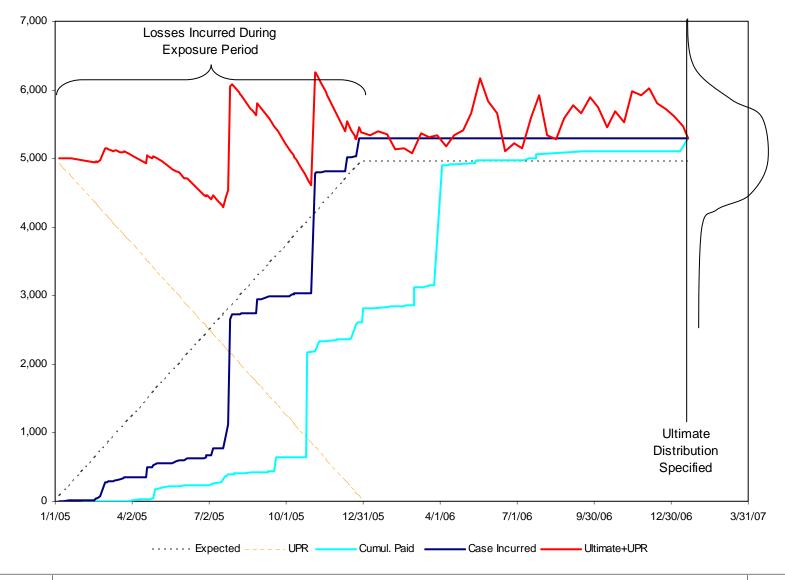
May 2, 2005

Overview

- Similarities and Differences Between Risks
 - → What is Risk?
 - Source-Based vs. Characteristic-Based Classification
 - Theoretical Tools
- Theoretical and Practical Challenges of Risk Integration
 - Dependencies
 - Modeling Philosophy & Guidelines
- Model "Insights" & Decision Making
 - ▶ What Can We Expect From a Model?

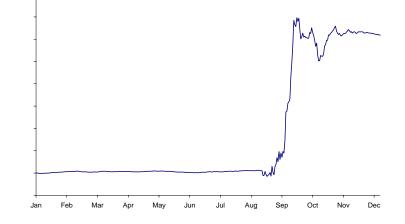
What is Risk?

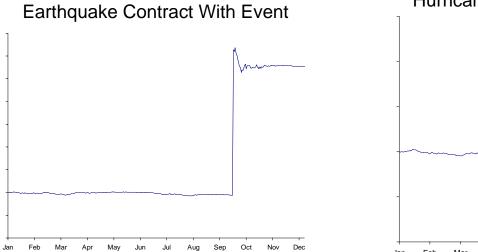
- Risk: The Possibility Actual Differs From Expected
 - ✤ Balance Sheet Entries, Accruals, Valuations
 - Inadequate or Redundant or Both
- Three Characteristics of Risk
 - ► Severity
 - ▶ Time
 - Dependence
- Analysis/Synthesis Framework
 - Analyze Severity & Time Components Separately
 - >> Synthesis Requires Understanding of Dependence Between Risks


Classification of Risks

- Source-Based Classification (Practitioner)
 - >> Underwriting, Credit, Market, Liquidity, Operational
 - Developed Since 1990s in an Insurance Context
 - Lowe, Standard Integrated DFA & Decision Support System, 1996
 - Catastrophe Models, Early 1990s
- Characteristic-Based Classification (Academic)
 - **Severity** of Risk: Theory of Probability Distributions
 - Developed Since 1700s
 - Bernoulli, de Moivre, Laplace, Poisson, Gauss, Pareto
 - Extreme Value Theory, Thick-Tailed, Sub-Exponential, Distributions
 - **Time** Element: Stochastic Processes
 - Developed Intensively Since 1930s
 - Lévy, Khintchine, Kolmogorov, Doob, Meyer, Itô
 - Brownian Motion, Markov Processes, Lévy Processes
 - Critical to Development of Finance
 - **Dependence**: Statistical Association, Copulas
 - Newer Area of Research Since 1950s
 - Fréchet, Sklar

- Static View of Risk
 - P/C Actuaries Highly Trained in Static View of Risk
 - >> What is Distribution of AY Ultimate Loss?
- Dynamic View of Risk
 - ▶ ERM Requires Dynamic View of Risk
 - How Will Booked AY Ultimate Evolve Over Time?
 - Do Evaluations Between Statements Matter? (CP190, "must at all times")
 - >> Theory of Stochastic Processes Highly Developed
 - Cornerstone of Modern Finance
 - Situation Vacant: Joint Stochastic Process Model
 - \blacktriangleright (Paid Loss, Case Incurred, Bulk Reserve)_t
 - Bulk Reserve = f (Paid Loss, Case Reserve)
 - Simulation of Ultimate Loss Must Be Expanded To Simulation of Evolution of Paid Loss, Reserve & Ultimate Loss Over Time
 - Approach Crucial to Modeling Reserve Uncertainty






- Risk Can Evolve in Jumps or Continuously or Both
 - Price Evolution of Contract to Pay A Portion of US Hurricane Losses in Sept. 2005 vs. US Earthquake Losses in Sept. 2005

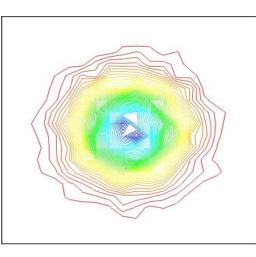
Hurricane Contract With Event

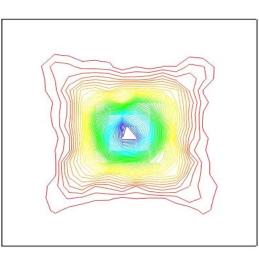
AON

- Two Basic Processes
 - Continuous Evolution: Brownian Motion
 - Jump Evolution: Poisson Process
- Aggregate Loss Model Gives Jump Process

 $A = X_1 + \cdots + X_N$

- ▶ Frequency N, E(N)=Expected Counts Per Unit Time
- ► N Often Poisson
- Severity X From Usual Suspects
- Generalizing Aggregate Loss Model To Poisson Process
 - ▶ Define Frequency Density $\lambda(t)$ Which Can Vary Over Time
 - ► Expected Frequency Between 0 and *t* Given By $N(t) := \int_{0}^{t} \lambda(t) dt$
 - Actuaries Well Placed to Analyze & Model Risk Evolution




The Challenge of Risk Integration

- Next Step In Analysis/Synthesis Framework: Risk Integration
- The Challenge: Dependence!
- Long Term Capital Management
- Marginals & Correlation Structure Do Not Determine Distribution
 Mean & Standard Deviation Do Not Determine Univariate Distribution

Normal Copula

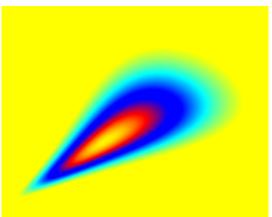
t-Copula

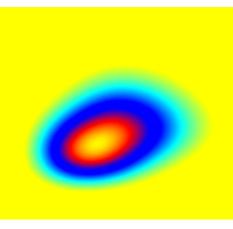
The Challenge of Risk Integration

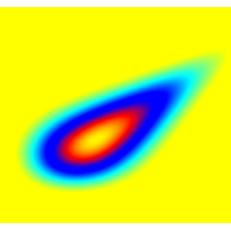
- Structural Economic-Scenario Based Models
- Correlations & Dependencies Among All Risk Sources, CAS Working Party
 - Quasi-Structural Contagion Models (Glenn Meyers)
 - Bivariate Fourier Transform (David Homer)
 - Iman-Conover Method (SM)
 - ▶ Copulas
 - ▶ Reproduce Qualitative Behavior
 - Useful When Aggregate All That Matters
 - Use FFTs to Add Zero Mean "White Noise"

Iman-Conover Method

- Iman Conover (IC) Method
 - Given Input Sample from Desired Marginal Distributions
 - Re-order Sample to Have Same RANK ORDER as a Reference Multivariate Distribution With Desired Linear Correlation
- Method Effective Because
 - ▶ Rank and Linear Correlation Close
 - ► Easy to Produce Reference Multivariate Distributions
- IC Used By @Risk Software
- IC Algorithm, Inputs
 - Sample (*n* x *r* matrix) From Marginal Distributions
 - E.g. *n* ~ 10,000, *r*=2 for Bivariate Distribution
 - ➤ Correlation Matrix (r x r matrix)
- IC Algorithm, Output
 - Sample Re-ordered With Desired Correlation
- Reference Distributions Generated Using Choleski Trick
 - ▶ Elliptically Contoured Distributions (Normal, t, Laplace)


Copulas

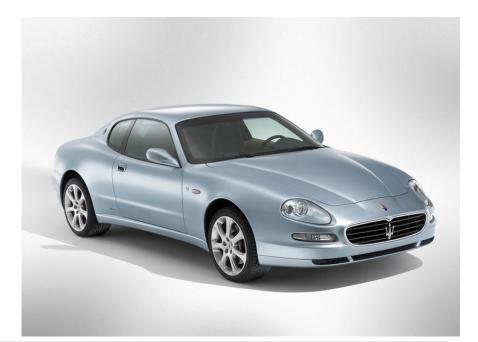

- Copula: A Multivariate Distribution With Uniform Marginals
- ▶ Sklar's Theorem: Copulas Determine Multivariate Dependencies
 ▶ Pr(X₁ < x₁,..., X_n < x_n) = C(F₁(x₁),...,F_n(x_n))
- Copulas Generate Many Different Dependency Structures
- Simulating From Copulas Can Be Difficult
 - Archimedean Copulas Easy To Simulate From


Cook

Venter HRT

Modeling Philosophy & Guidelines

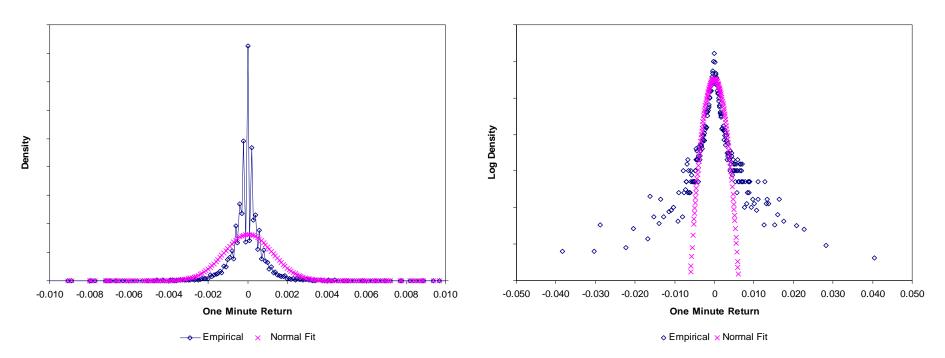
- Avoid Sweeping Generalizations
- Begin With The End In Mind
- Understand Process Then Model
- Model Insights: Reasonable & Unreasonable Expectations


Avoid Sweeping Generalizations

- For Every Rule About Risk There Is A Counter-Example
- Pathological Examples
 - ▶ 99th Percentile As Risk Adjusted Value
 - Any Percentile Can Be Less Than The Mean
 - Implies Negative Risk Load
 - >> Standard Deviation as Risk Measure
 - Pareto Can Have Same Mean & Lower SD Than a Uniform
 - Uncorrelated But Dependent
 - t-Copula vs. Normal Copula
- Be Aware of Limitations of Assumptions
- Intellectually Rigorous Framework Desirable
 - ✤ Coherent Measures of Risk

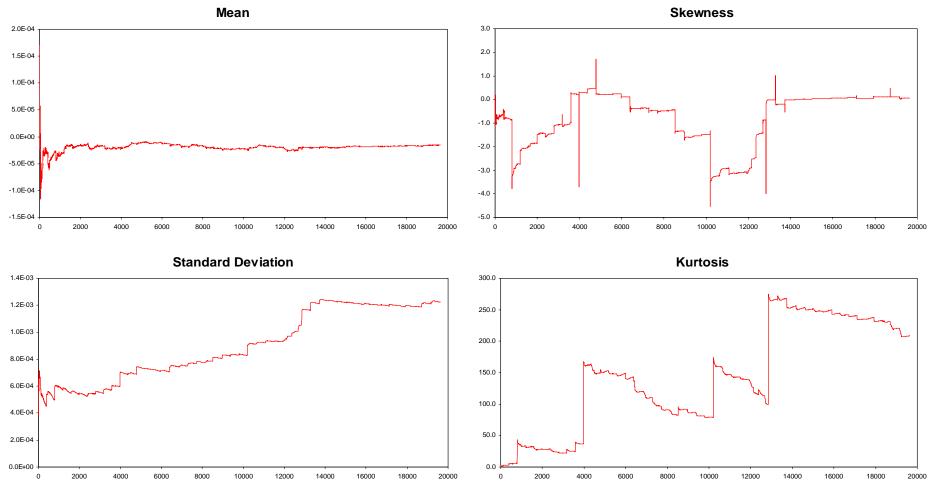
Begin With the End in Mind

- Building An ERM Model Like "Building A Car"
 - Both Require Goal-Driven Design Objectives
- ERM Goals Include
 - Reinsurance Decisions
 - Capital Determination
 - Capital Allocation
 - Set BU Profit Targets
 - General Business Planning
 - Investment Opportunities
 - Acquisitions
 - Growth Strategy
 - Investment vs. UW Risk
 - Reserving & Capital



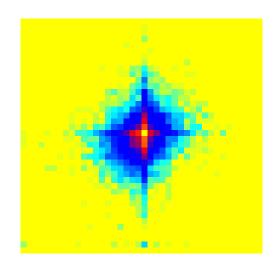
Understand Process – Then Model

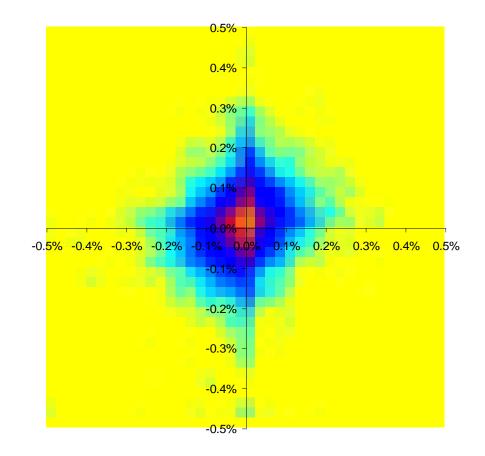
- Don't Let Modeling Expediencies Drive Model Process
- Workers Compensation Claim Payment Process
 - Driven By Mortality & Medical Cost Escalation Assumptions
 - Not Modeled Well Using Traditional P/C Actuarial Methods
 - >> Triangle Methods Ignore Changing Claimant Demographics
- Premium Correlation vs. Loss Correlation
 - >> Dependence in Results Driven By Premium Dependence
 - ▶ Catastrophe Losses Exhibit Quantifiable Loss Correlation
- Minimum Pension Liability
 - Difference of Asset & Liability Under Statutory Accounting
 - Very Sensitive To Investment Return Assumptions
- Example: Stock Price Returns


Example: Stock Prices

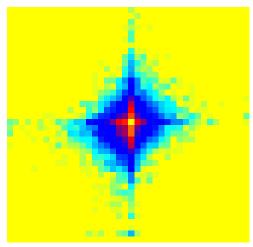
- Density of 1 Minute Returns Not Normally Distributed
- Largest Observed Changes ±4%
 - Most Big Moves Occurred Late In Trading Day, Between 15:10 and 15:20
 - ▶ For Normal Model ± 4% is a 1 in 10²³³ Event
 - Actually Occurred Twice in 19,000 Observations
- Is Difference in Distribution Important? Perhaps!

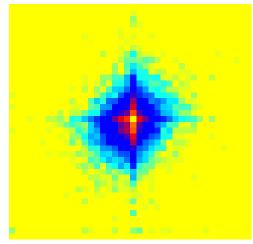
Example: Stock Prices

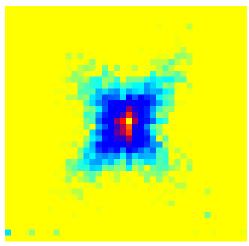


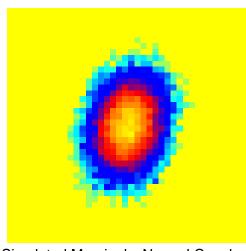

- Sequentially Computed Moments of 1 Minute Returns, Mandelbrot Converging Moment Test
 - ▶ F. Longin, Asymptotic Distribution of Extreme Stock Market Returns, J. of Bus., 1996 69(3)
 - Concluded First Two Moments Exist From 29,000 Daily Observations

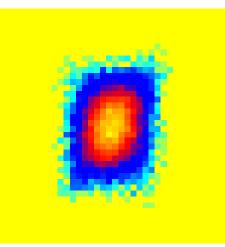
Example: Stock Prices

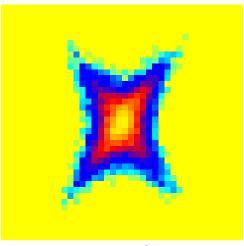

- Bivariate Distribution of 1 Minute Returns For Two Large Stock Companies, Feb-Apr 2005
- ▶ SD₁=0.075%, SD₂=0.103%
- Correlation 18.34%




Example: Stock Prices, IC Method


Actual Marginals, Normal Copula


Actual Marginals, t-Copula, 5 DoF


Actual Marginals, t-Copula, 1 DoF

Simulated Marginals, Normal Copula

Simulated Marginals, t-Copula, 5 DoF

Simulated Marginals, t-Copula, 1 DoF

Use of Model Results

- What Can We Expect From Models?
- Model Output Always Reflects Model Assumptions
- Management Reaction To Events & Feedback Loops Impossible to Model
- Reasonable Expectations
 - ▶ Reinsurance
 - Adequacy & Effectiveness
 - Capital
 - Determination & Allocation
 - Detailed Short-Term Calculations
 - Cash-Flow Projections
 - RBC, BCAR Projections
 - Growth Strategy
 - Adequate Income & Capital to Support Business Plan?
 - Stochastic Analysis of Static Plans
 - Weed Out Bad Strategic Options

- Unreasonable Expectations
 - Optimize _____
 - Management Role To Decide
 Between Efficient Choices
 - No Universal Evaluation Criteria
 - Model Can Provide Guidance
 - Investment Decisions
 - Parrot Assumptions
 - Assumptions Article of Faith
 - Tony Day, Financial Economics
 - & Actuarial Practice, NAAJ 8(3)

Summary

- Actuarial Analysis of Severity Well Developed
- Theory of Time Evolution of Risk Available & Readily Comprehensible to Actuaries
- Theory of Risk Dependencies Still Under Development
- Model With Goal in Mind
- Question Model Insights; Apply With Caution

