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Abstract

The Myers and Read capital allocation formula is an important new actu-
arial result. In this paper, we give an overview of the Myers and Read result,
explain its significance to actuaries, and provide a simple proof. Then we
explain the assumption the allocation formula makes on the underlying fam-
ilies of loss distributions as expected losses by-line vary. We show that this
assumption does not hold when insurers grow by writing more risks from a
discrete group of insureds—as is typically the case.

Next, we discuss whether the inhomogeneity in a realistic portfolio of
property casualty risks is material. We show how to decompose the relevant
partial derivatives into homogeneous and inhomogeneous parts and examine
the behaviour of each. We then apply the theory to some realistic examples.
These clearly show that the lack of homogeneity is material. This failure
will severely limit the practical application of the Myers and Read allocation
formula.



1 Introduction

In an important paper for actuaries, Myers and Read (2001) showed how to allo-
cate the expected policy holder deficit in a multi-line insurance company uniquely
to each line. Their work can also be used to allocate surplus to each line. Previ-
ous work on the allocation problem, including Phillips et al. (1998) and Merton
and Perold (2001), had concluded that such an allocation could be inappropriate
and misleading. The Myers and Read result is, therefore, potentially a significant
breakthrough, with obvious importance to actuaries.

Myers and Read repeatedly stress their result is independent of the distribution
of losses by line and of any correlations between lines that may exist. They say
their “proof requires no assumptions about the joint probability distributions of
line-by-line losses and returns on the firm’s portfolio of assets.” However, while
their result makes no assumptions aboutdtaic distribution of losses with fixed
expected loss by line, their derivation does make an important assumption about
how the dynamicdistribution of losses changes shape with changing expected
losses by line. This paper will explain the significance of the latter assumption.
We will show it is a necessary and sufficient condition for the Myers and Read
result to hold. Most importantly, we will show that the assumption does not hold
when insurers grow through the assumption of risk from discrete insureds—as is
typically the case.

For the convenience of readers not familiar with Myers and Read’s work, we
begin with an overview. Consider a simple insurance company which writes two

lines of business. The losses from each line are represented by a random variables



X1 and X,, with meansr; andz,. Since the company can choose to write more
or less of each line, we assume that the familigér;) and X, (z-), with varying
meansr; andx., are specified. For example, losses from line 1 may be normally
distributed with mean:; and standard deviatior)00 and for line 2 be normally
distributed with meamn:, and coefficient of variatiom. Assume the company has
capital £ and total assets; + =, + k. Also assume that interest rates are zero.
(Myers and Read show how to convert from deterministic investment income to
stochastic income. We focus on deterministic income and set it equal to zero for

simplicity. Nothing of substance is lost in doing so.) Let
[(;Ul,ilig, /{7) = PI‘(Xl 4+ X9 > 21+ 29+ k)

be the probability of insolvency. Finally, assume that the company holds its prob-
ability of insolvency constant, by adjusting writings of each line and the amount

of capital held. Let (1, z5) satisfy
I(x1, 29, K(x1,22)) = constant.

Then, under certain assumptions on the familig$z;) and X,(z,) for varying
x1, T2, but undemo assumptions on the distributions of losses given fixeahd
9 WE can prove

0K 0K

This is obviously a very useful result: it tells the company that it should allocate
capital at the rat@ K /0z; to line 1 ando K /dz, to line 2, and that if it does so

the total capital allocation will add up to actual capital! We prove Equation (1) in



Corollary 2, below. It is very similar to the actual Myers and Read result, which
we prove in Corollary 1.

The main result of the paper, Proposition 1, states the assumptions on the
families X;(x;) required for Equation (1) to hold. We show that in most real-
world situations these assumptions will, unfortunately, fail to hold. We also give a
straight-forward proof of the Myers and Read “adds-up” result and we prove two
related extensions. Finally we give several examples to illustrate the results.

The necessary distributional assumption highlights the difference between a
continuous “representative insurer” approach, where each insurer assumes a share
of a total market risk, and a discrete approach, where insurers assume risk from
distinct and discrete individual insureds. The Myers and Read result requires a
continuous view as we show in Proposition 1. Examples 4.4 and 4.5 show the
result is not true in a discrete environment. Butsic (1999) used the representative
insurer argument in his application of Myers and Read.

The rest of the paper is laid out as follows. In the next section we prove two
technical lemmas. Section 3 states and proves the main Proposition. Section 4
gives several examples using the main result. Section 5 examines how the Myers
and Read formula fails when losses are inhomogeneous and shows that in realistic

examples the failure will be material.

2 Two Technical Lemmas

Lemmal Letf : R" — R be a differentiable function of variables. Then

=0 )

if and only if f is constant along rays from the origin.



Note: If f is constant on lines through the origin theis calledhomogeneous
The lemma only requireg be constant along rays from the origin; along a line
f can change as the line passes through the origin. The functienz/|z| is a
good example of what can occur: it changes value frehto —1 at zero. Iff is
constant along rays from the origin, then in half spaces through the gfigam
be expressed as a functiongfz;, i = 1,...,n whenx; # 0, for eachj. In our
applications of this lemma, the domain bvill be the positive quadrant, so there
is no difference between lines through the origin and rays from the origin in the

domain. | would like to thank Christopher Monsour for pointing this out.

Proof Sufficiency: if f is constant along rays through the origin, then by the note
we can assume locally that(xy,...,z,) = f(xl/wn, ey Tpo1/z,) fOr sOme

function f of n — 1 variables. An easy calculation shows

of of I x Tn—1 7 Ty ¢ Tn—1 7
$1a—xl+"'+1’naxn = x—nf1+"'+ - fnfl_xn(x_%fl+"'+x_%fnfl)
= 0,

wheref, = 0f(x1,...,2n_1)/0;.
Necessity: Lev = (z4,...,x,) be a differentiable curve, so=v(t) : R —
R™, with dv/dt = v. This means is equal to its own tangent vector for each

By separating variables it is easy to see thé a line through the origin. (It has

the forme!(k, . .., k,) for constants of integratiok;.) Then, by the chain-rule
d B of of
Ef(v(t)) = xla—xl—i‘—i‘l’na—xn

= 0,



by assumption, so the directional derivativefodlong each half of any such line
v IS constant, i.e.f is constant along rays from the origin, as required. Swce
never reaches the origin, we cannot assert thigtconstant along lines through

the origin. OJ

Lemma 2 Let f : R" — R be a differentiable function of variables. Then,

of of
mla—xl—i- +l‘na$n

=/ 3)

on a half-space where; > 0 (resp. x; < 0) if and only if there exists a differ-
entiable functionf so thatf(xzy,...,x,) = x1f(22/x1, ..., 2, /1) on that half

space, and similarly fot,, . .., x,.

Proof If f(zy,...,2,) = x1f(z2/21, ..., 2, /1) then, using subscripts ohto

denote partial derivatives,

The first sum comes from the partial derivative with respeat;tand the second
sum comes from all the remaining partials.

On the other hand, suppogesatisfies Equation (3) and Igtt, s,, ..., s,) =
f(t, sat, ..., spt)/t wheret > 0 (resp.t < 0). We must showf is independent of

t. Differentiating

O ([t sat,....snt)\ 1 u

=0

and the result follows [



3 Statement and Proof of Main Result

Before stating the proposition we need to define some more notation. We are
modeling a multi-line insurance company. Losses from each line are modeled by
random variables(;, i = 1,...,n, whereX; has mearn; and distribution func-
tion F;. We often regard; as a variable (but not a random variable), so ed¢cls
really a family of distributions indexed by;. Where necessary we emphasize this
by writing X;(z;). Changes in; correspond to increasing or decreasing volume
in line 4, sincex; is thea priori expected loss.

Assume that the company holds total assets equal to- - - + =, + k, SO in
a very simplistic sensé; is the capital or surplus of the company.

Next, define the probability of insolvency function and the expected policy-

holder deficit function for a single lineas

Ii(zi, k) = Pr(X; > 23+ k) = 1 — Fy(z; + k) (4)
and
z;+k

In both of these equations is performing double duty: it is the mean &f and

in x; + k it determines wheré; is evaluated. To emphasize this we could write
Ii(zi, k) = 1 — Fi(zi + k; ). (6)

Finally, let X = X; + --- + X, be the total losses with distribution functidn

Define insolvency and deficit functions for the whole company as

I(zy,.. 20, k) =Pr)_X; > i+ k)=1-Flai+- 4z, +k) (7)



and

D(zy,... &0, k) = /--~/t1—|—~~+tn—(:c1+~-+:cn+k)dF(tl,...,tn).

Z ti>2 x;+k
(8)

The following definition is key:

Definition 1 A family of random variables( (z) with E(X (z)) « « is called
homogeneousf there exists a single random variabléso thatX (z)/z has the

same distribution a&’ for all z.

Homogeneity is Myers and Read’s only distributional assumption, and it means
that losses come from a representative insurer. The requirement/ tlsatn-
dependent ofc is important—after all, any random variable can be written as
X = E(X)(X/E(X))! An exponential variableX with meanz is a homoge-
neous family, sinceX’ = zU whereU has an exponential distribution with mean
1. However, a normal variable with mearand standard deviatiohis not homo-
geneous.

In order to compute expressions liké/0x we need to know how the family
X (x) changes shape with changestinWe need to work withX (z + ¢) as well

as X (z) because

— lim

e—0

ol d
= - _2F :
e o (x+k;x)
_ _hmF(x—i-k—l—e;x)—F(x—i-k;x)
e—0 €
Fla+kx+e) — F(z+k;x)
€



The partial derivative hasstaticpart, where the mean of the underlying variable
does not change, anddynamicpart, where the point of evaluation is fixed but
the mean changes. This shows computing partial derivatives sugh/as is
inextricably linked to families of random variables.

With this notation we can now state our main result.
Proposition 1 The following are equivalent.

1. Foreachi =1,...,n, X;(z;) isahomogeneous family of random variables.

2. Foreachi =1,....n

ol; ol;
— + k= =0. 9
xlaxl ok 0 ©)
3. Foreachi=1,...,n
oD; oD;
B, k E D. (10)
4. \We have equality
ol ol ol
el il — =0. 11
xlaler +$"8xn+k8k 0 (11)
5. We have equality
oD oD oD



The proposition says that each of the five statements holds if and only if all
the other four hold. Put another way, if one of the five fails to hold then the other
four will also fail. This means that we can construct simple one line examples
and can use items 2 and 3 generalize to the multi-line case. This simplifies the
mathematics of the examples.

Proof We shall prove (4) implies (2) implies (1) implies (4), and then (5) im-
plies (3) implies (1) implies (5), which is enough to show all the statements are
equivalent.

(4) implies (2): Setr; = 0 for j # 4 in Equation (11) to get Equation (9). This
can also be seen geometrically using Lemma 1 which &y/sonstant along rays
from the origin. Thereford;, which is a restriction of, is also constant along

such rays.

(2) implies (1): Lemma 1 applied tf shows there exists a functidnso that
Ii(w, k) = Li(k/z;).

LetU; = X;/z;, thenPr(U; > u) = I}(u — 1) is independent of; as required.

(1) implies (4): Assumption (1) implies thdtis constant along rays from the

origin, so the result follows from Lemma 1.

(5) implies (3): Setr; = 0 for j # 7 in Equation (12) to get Equation (10).

(3) implies (1): LetU; = X;/x;. We have to showWr(U; > u) is independent of

x;. Leta™ = max(z,0). Then, notice that

- E[%(inm — O mi+ k)T (14)
= El-1xwusy ek} (15)

= —Pr() x> i+ k) (16)



is minus the probability of default. Next, use Lemma 2 to defiheso that
Dy(x;, k) = z;D;(k/x;). Therefore

oD; -
=D 4
o = Ditk/z)

and so

Pr(U; > u) = —Dl(u — 1)

is independent af; as required.

(1) implies (5): Assumption (1) shows we can writeas
D(xy, ... &0, k) = kD(x1/k, ... 2, /k)

so the result follows from Lemma 2]

The results in Proposition 1 are clearly similar to Myers and Read’s results
but they are not exactly the same. We shall now explain how to derive their exact
result and prove some other similar results. For simplicity we shall assume
and work with justz; andz, in the rest of the paper.

Myers and Read’s “adds-up” result (their Equation A1-3) involves computing
the marginal increase in surplus required to hold the default value constant, given
a marginal increase in a particular line. We have been taking a slightly different
approach: if we hold the surplus and default value constant, what decrease is
needed in line 2 to offset an increase in line 1? However, it is easy to reconcile the
two approaches. To do this, lef andx, be the marginal surplus requirements for

each line. Note that,; andx, are ratios whereasis a dollar amount. Myers and



Read then use a capital amount x,z + koxs and define the default value,,

(to distinguish from ouD) as
DM<I1,JIQ> = D(ZEl,IQ,Hll’l +:‘€2$2). (17)

Myers and Read use the following notation in their Appendix 1. They write
L, = L.R,, whereL, corresponds to out,, R, to U; and L, to X;. Thus
L, = L, R, translates into ouk; = =10, i.e. the homogeneity assumption. The
value L, is the expected value df, at time 0. We are ignoring the time value
of money here by assuming an interest rate of zero. Myers and Read also work
with a fixed interest rate and then integrate over all possible rates—an extra level
of sophistication that need not concern us.

We can now prove their result.

Corollary 1 (Myers and Read) Assume losseésorm a homogeneous family for

eachi. Then default values “add-up” in that

0Dy oD
1 + o
(’33:1

M
= Dy. 1
St = D (18)

Proof Computing using the chain-rule and then applying Proposition 1 item 5

in Equation (21) gives:

dDy ~ dDy 9D aD oD 9D
T 81‘1 i) (%2 = Jil(a—ml + :‘11%) + xg(a—b + Iigﬁ) (19)
oD oD D
= T T — (2
T axl + 29 8.732 + (Fdlﬂil + /in'Q) 8k: ( 0)
= D(z1, %9, KT + KoX2) (21)

= D]V[(l‘l,ﬂfz) (22)



as required.]

Simple Proof Here is the simple, self-contained proof we promised in the in-
troduction. Dividing through by, in the definition ofD, Equation (8), it is clear

that D, (1, x5) = @1 Dy (2/ ) for some functionD,,;. Thus

8DM aD]\/[ ~ T2 8DM aD]y[
T + X9 = I D )
8%1 8372

8x2

T 8:61

= Dy

which completes the proof]
We now prove two more Myers and Read-like results which follow easily from
Proposition 1. Using the implicit function theorem, Burkill and Burkill (1980),

there is a functionk'(x1, x2) so thatl (zy, xo, K(z1,z5)) = ¢ iS a constant.

Corollary 2 Assume losseX; form a homogeneous family for eachThen sur-
plus values defined by constant probability of default “add-up” in that

0K 0K

Proof Proposition 1 implies

a1 ol ol
4k —0. 24
Ny, Treg TR =0 (24)

By the implicit function theorem

oK ol ,01
- - /== 2
afL’l 8x1 8k’ ( 5)

and similarly forz,. Rearranging Equation (24) and substituting Equation (25)
gives

T +Ta— = K, (26)



so surplus values “add-up” just as Myers and Read’s default values addrup.
Next, use the implicit function theorem to define a functigi:,, x2) so that

D(xy,x9, L(x1,22)) = c.

Corollary 3 Assume lossek; form a homogeneous family for eachThen sur-

plus values defined by constant expected policy holder deficit satisfy

8I1 61‘2

whereT = TVaR(zy + z2 + L(x1 + x3)) is the tail-value at risk beyond; +

xo + L(x1 + x2).

Proof Using the implicit function theorem again, and dividing Proposition 1

item 5 by—0D/0k, we get
(28)

Thus, by Equation (16)

oL oL
—_— —=L+T
xl@xl + o Oz +

whereT is the tail-value at risk.(J

4 Examples

By Proposition 1, we can give one-dimensional examples and know they will
extend to the multivariate situation as expected. We make use of this simplification

in several of the examples below.



4.1 Examples of Homogeneity

Homogeneous families can be made from a wide variety of continuous distribu-
tions. For example, varying the scale paramét@nd holding all other parameters
constant for any of the distributions listed in Appendix A of Klugman, Panjer and
Willmot (1998) which have a scale parameterwill produce a homogeneous
family. This includes suitable parameterizations of the transformed beta, Burr,
generalized Pareto, Pareto, transformed gamma, gamma, Weibull, exponential,
and inverse Gaussian. By Proposition 1, sums of selected from such families will
also be homogeneous. Also, trivially, ¥ is any distribution with mean 1 then
xX is a homogeneous family asvaries.

For example ifX has an exponential distribution with meanso Pr(X >
t) = exp(—t/x), thenX = zU whereU has an exponential distribution with

meanl. This follows since
Pr(X > t) = exp(—t/z) = Pr(U > t/x).

Here

I(z,k) =Pr(X >z +k) =exp(—k/z)/e

which clearly satisfies item 2 of Proposition 1.



4.2 Simple Example where Homogeneity Fails

It is easy to construct examples where the homogeneity assumption fails. All
members of a homogeneous family have the same coefficient of variation, there-
fore a family with a non-constant coefficient of variation will not be homogeneous.
For example, leX be normally distributed with meanand constant standard de-

viation 1. ThenX is not homogeneous. By definitidiiz, k) = 1 — ®(k) so

where® and¢ are the distribution and density for the standard normal.

If the reader is skeptical about using only one variable, he or she will find it
easy to construct multivariate distribution examples using normal variables. For
example, consider what Corollary 2 says whénis distributedN (x4, 1) and X,

is distributedN (5, 1). X 4+ X, is distributedN (z; + 3, v/2), SO
I(z1,20,k) = 1= ®(k/V?2). (29)

ThusoK /0z; = (01/0z;)/(01/0k) = 0fori = 1,2. Corollary 2 then read&” =
0, which is absurd! This shows the importance of the homogeneity assumption
for the results derived from Proposition 1, including Myers and Read’s allocation
formula. This example can also be generalized to the case wheaad X, are

correlated.



4.3 Homogeneity Fails with Constant Coefficient of Variation

Itis less simple, but still possible, to construct examples where the coefficient of
variation is a constant function of the mean, but which nevertheless fail to satisfy
the homogeneity assumption.

For example leX' (x) be distributed as a gamma random variable with param-
etersa = 4x?, 0 = 1/2 shifted byz(1 — 2z). Here we are using the Klugman,
Panjer, Willmot parameterization st{t; «., ) = (t/0)*e/?/tT'(a). It is easy
to checkX (z) has mearr, constant coefficient of variation 1 and skewngégs,
since the skewness of agamma is 2/+/«. I is given by the incomplete gamma
function, I (z, k) = T'(42?, 42* + 2k), which does not satisfy the assumptions of
Lemma 1, saX (z) is not homogeneous. The reason is clear: the far¥i(y)
changes shape withand so cannot be homogeneous.

Taking this a step further, it is possible to construct a family all of whose higher
cumulants (coefficient of variation, skewness, kurtosis, etc.) are independent of
the mean, just as they would be for a homogeneous family, but which neverthe-
less fails to be homogeneous. To do this,liebe a lognormal random variable
with In(U) distributed as a standard normal. léte a random variable density
function fy () = fu(z)(1 + sin(27 log(z))), wherefy is the density of/. Then
U andV have the same moments—see Feller (1971), Chapter VII.3. This type of
trick is possible because the moments of a lognormal grow too quickly to ensure it
is determined by its moments—see also Billingsley (1986) Section 30X I.e}
be a mixture oftU andzV with weightsp(z) = x/(z + 1) and1 — p(x). Then

I(z, k) == p(x)Pr(U > 1+ k/x) + (1 —p(z))Pr(V > 1+ k/x)



is not a function oft/x so the result follows from Lemma 1 and Proposition 1.
Alternatively, writing Iy (z, k) = Pr(zU > z + k) and similarly forV one can

compute directly

or oI
To + k% = ap'(z)(Iy(z, k) — Iy (x,k)) #0

sincezU andzV are homogeneousyp'(z) > 0 by construction, and,, — I, # 0.

Thus X (z) is not a homogeneous family.

4.4 Aggregate Distributions are Not Homogeneous

Example 4.1 shows a large number of continuous variables satisfy the homogene-
ity assumption. For our purposes, however, there is a very important class which
does not: aggregate loss distributions.

Let A = X; + --- Xy where theX; are independent, identically distributed
severities andV is a frequency distribution with mean Increasing expected
losses in this model involves increasing SupposeN has contagion, so, as

suggested by Heckman and Meyers (1983),(N) = n(1 + ¢n). Then

_CV(X)

n

CV(A)?

1
—+c
n

is clearly not independent af. ThusA does not satisfy the homogeneity assump-
tion. Just as for Example 4.3, the aggregate loss distribution changes shape as
n increases. This is illustrated in the figure below, which shows six aggregate
loss distributions with the same severity distribution but different claim counts,

indicated by “CC=20" forn = 20, and so forth. The individual densities have



been scaled so that if the family were homogeneous then all the densities would
be identical and only one line would appear in the plot.

If aggregate distributions can be approximated by various of the parametric
distributions of Example 4.1, and if those distributions are homogeneous, does
the result of this Example really matter? The answer is emphatically “yes”. This
example shows that in the real world, where insurers grow by adding discrete
insureds, the “adds-up” results do not hold. The way the aggregate distribution
changes shape forces parameters other than the scale parameter to change as the

mean increases, and thus homogeneity is lost.

Aggregate Distributions are Not Homogeneous

6.0E-03

——CC=20.00
5.0E-03 7 ——CC=25.00

CC=31.25
~—CC=39.06
——CC=48.83

4.0E-03 ——CC=61.04

3.0E-03 7

Probability

2.0E-03 7

1.0E-03

0.0E+00 T T T
0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000
Loss

4.5 Compound Poisson Distributions are not Homogeneous

This example proves that various aggregate distributions can never be homoge-

neous families.



Proposition 2 Let A be a compound Poisson aggregate distribution
A=X1 4+ Xy (30)

whereN has a Poisson distribution with meanand theX; are independent and

identically distributed. Thenl(n) is not a homogeneous family.

Proof The moment generating function &f is My (t) = exp(n(e — 1)). The
moment generating function ef is thereforel 4 (t) = exp(n(Mx(t)—1)) where
Mx is the moment generating function for sevetky If A is homogeneous with

A distributed as:U for some fixedJ, thenM 4 (t) = My (nt). Thus
n(Mx(t) — 1) = log(My (nt)).
Differentiating with respect ta shows
(Mx(t) — 1) = tM{;(nt)) /My (nt).

ThereforeM|,(t) /My (t) must be a constant, since the left hand side is indepen-
dent ofn. HencelMy,(t) = exp(ct) for a constant, and sal/ = c is a degenerate

distribution. But this is impossible unleséis constant oX; = 0. [

Corollary 4 An aggregate distribution with frequency componéntvhich is a

mixture of Poisson distributions cannot be a homogeneous family.

Proof Condition on the mixing parameter and apply Propositioi 2.
For example, the Corollary applies to negative binomial and Poisson-inverse

Gaussian frequency distributions.



5 Is Inhomogeneity Material?

In this section we will show that the inhomogeneity inherent in a typical portfolio
of property casualty risks is sufficiently large to invalidate the Myers and Read al-
location formula. By Proposition 1, we can discuss inhomogeneity in the context
of one random variable, rather than two or more, which simplifies the mathemat-
iCS.

Let X (z) be a smooth family of random variables wil{ X (x)) = z. Let
F(t,z) = Pr(X(x) < t) be the distribution function ofX () and f(¢,z) =
OF /0t be its density.

Recall thatX () is homogeneous (with respect to the mean) if there exists a
random variablé/ so that

X(x)=2aU (31)
for all x. In this case, lef}; and f;; be the distribution and density functions of
U.

Recall also that the expected default, with capital rati® defined as

D(x) = /OO (t—x(1+k))f(t,x)dt. (32)

(1+k)
Note thatz(1 + k) represents total assetsfrom the loss and:x from allocated

capital. In a more sophisticated model we could consider profit in the premium;
here we simply assume this is subsumed into the constant
By Proposition 1 we know
D
or

if and only if X(z) is a homogeneous family, which is then equivalent to the

D (33)

Myers-Read adds-up result.



5.1 Heuristics

A homogeneous family offers no diversification benefit as the mean increases.
Property casualty insurance is based on diversification, and the inhomogeneity
inherent in a portfolio of insurance risks means that the relative riskiness of the
portfolio decreases as expected losses increase. Since a lower risk portfolio has a

lower expected default, one would expect that

<D 4
x8x< (34)

for an inhomogeneous insurance portfolio.
Meyers (2003) introduces the heterogeneity multiplier, which is a constant
defined so that
oD

—=D.
AT e (35)

He shows thad is typically greater than 1 (as expected). In further unpublished
work, Meyers uses empirical data to estimate thatin the range 1.5 to 2.5, de-
pending on the size of the company. This suggests that inhomogeneity is material.

If X is homogeneous then, for all> 0,

xa—D =D >0. (36)
ox

However, intuitively, one would expect that for a large enough capital ratto
should be possible for the extra capital associated with writing more business to

more than offset the extra risk. This would imply that

— 7
x8x<0 (37)

should be possible for sufficiently large This is another difference between

homogeneous and inhomogeneous families.



5.2 Theory

In order to assess the impact of inhomogeneity, we will break the derivative
0D /0x into two pieces using a homogeneous approximation to the fakily).

For a fixedr, define a new homogeneous familyy) by
oy
Y(y) =~ X(x). (38)

Let G(t,y) andg(t,y) be the distribution and density functions bf Note that
Y (z) = X(x) and that
g(t,y) = f(tx/y, x)x/y. (39)

If X is already homogeneous, then cledrlyy) = X (y) for all y. Finally define
E.(y) to be the expected default valueYof

B = [ -y gl (40)
y(1+x)
The subscript: on E highlights the point: at which we have chosen to “homog-
enize” X. By definition E,(z) = D(x).

We can now compute

88_1; _ y_I)%D(ZL’—l—Ei—D(CL’) (1)
~ iy D(:U—i—e)—Ex(x—l—Ei—i-Ez(x—i-e)—D(x) (42)
_ lir% D(:E—I—e)—eEx(aH—e) HLI% Ex(:v+6€) — D(x) 43)
= () + tig AT D (4)
= 1)+ 20 (@5)



wherel(x) is defined by the first limit, and we have used the fact th&t homo-
geneous to replageF, /0x with E,(x)/xz = D(z)/x.

We can now prove the main lemma of this section.

Lemma 3 With the above notation

I(x):/:o (s —x(1+k)) (%4_2%_‘_@) ds. (46)

(1+k)

Proof Substitutes = tx/(z + €) in the limit defining/, swap the limit and
integral (Lebesgue’s dominated convergence theorem), and use the fact that the

limit of a product (quotient) is the product (quotient) of the limits to get

I(x) = /:O (s —x(1+ k))lim ((x +e)fls+ S(Zi’f; ¢) = zf(s, x)) ds.

e—0

(1+~)
(47)

Now add and subtract a term + ¢) f(s + se/z, z) in the limit, re-arrange and
cancel. The result follows[]

We will call I(x) the inhomogeneous derivative 6f with respect tor. We
will use the standard notatiofy = 0f /0t and f, = 0f /0.

If X is homogeneous then

ftx) = fult/z)/z (48)
htz) = fi(t/z)/«® (49)
fot,x) = —tf}/a* — fu /2 (50)

and so

Pt —fi+ if =0. (51)



Thus if X is homogeneous$(z) = 0 as expected.

The Lemma shows that

zl(z) = /00 (s —z(1+k))(xfo+ sfi)ds + D(x), (52)
z(1+k)
and so
xi)—D = (s —z(1+k))(xfo+ sfi)ds + 2D(x). (53)
Z z(14k)

WhenX is homogeneous, the integralirexactly cancels out the extfaterm. In

the tail of the distribution, we expeg¢t < 0, because the density will eventually

be decreasing with, and f, > 0 because for a givehthe densityf (¢, z) will
increase as the meanincreases. The exact balance of these two terms depends

on the degree of inhomogeneity.

5.3 Examples of Inhomogeneity

At this point we have developed enough general theory. For a realistic insurance
portfolio we expecttdD/0x < D, and possibly thatoD/0x < 0. In order to
test the magnitude of these effects we will use the following model.

Let A(x) be an aggregate loss distribution with expected losseseverity

componentS(/) and frequency component, so

We assume that (/) = min(S,[) results from applying a limit to a fixed un-
limited severityS. In the exampleS is chosen to be reasonably close to ISO’s
Premises and Operations B curve. The frequency distribiNiasmnegative bino-

mial with claim countr = x/E(S(()) and contagiom, soVar(N) = n(1+cn). In



Table 1: Total Derivativé)D /0x

x|l 1,000,000 | 5,000,000 | 10,000,000| 100,000,000
10,000,000 0.28% -0.42% -0.37% 3.74%
50,000,000 0.39% 0.30% 0.13% -0.40%

100,000,000 0.39% 0.37% 0.31% -0.02%
1,000,000,000 0.39% 0.39% 0.39% 0.39%

the tables below = 0.15, corresponding to an asymptotic coefficient of variation
of A(x) of 38.7%. The capital ratie = 1, so the expected loss to surplus ratio is
1to1l.

In order to compute the necessary derivatives, we will approximdate with
a shifted lognormal distribution, using the method of moments to match the mean,
variance, and skewness. For large portfolios, the shifted lognormal is a very good
approximation to the true aggregate distribution. This can be seen by comparing
the result of using FFTs to compute the true aggregate with the shifted lognormal
approximation. Figure 1 shows that the approximation is quite spectacularly good,
particularly in the relevant range beyofd. Regardless of whether you believe
this is a good approximation or not, the approximation has qualitatively the correct
shape and behaviour axhanges.

Let X (z) be the shifted lognormal approximation #§z). If X (z) has pa-
rametersr, i, ando, soln(Y — 7) is distributedN (u, o), then the homogeneous
approximationY’(y) to X (x) has parametetg/ 7, In(y/x) + i, ando. Therefore
we can computé and D explicitly.

In each table, expected loss amountse shown vertically and different limits

[ are shown across the columns. Patterns in Table 1 are hard to see directly, and are



Table 2: Homogeneous DerivativeExpected Default Ratie- D/«

x|l 1,000,000 | 5,000,000 | 10,000,000| 100,000,000
10,000,000 0.97% 4.21% 8.12% 19.27%
50,000,000 0.49% 0.92% 1.49% 3.99%

100,000,000 0.44% 0.63% 0.87% 1.90%
1,000,000,000 0.40% 0.41% 0.43% 0.49%

Table 3: Inhomogeneous Derivativér) = 0D /0x — D /x

x|l 1,000,000 | 5,000,000/ 10,000,000 100,000,000
10,000,000 -0.69% -4.64% -8.49% -15.53%
50,000,000 -0.10% -0.62% -1.36% -4.39%
100,000,000 -0.05% -0.26% -0.56% -1.92%

1,000,000,00d 0.00% -0.02% -0.04% -0.11%
Table 4: Heterogeneity Multiplier

x|l 1,000,000 | 5,000,000/ 10,000,000 100,000,000
10,000,000 3.45 -9.96 -21.66 5.15
50,000,000 1.26 3.10 11.72 -9.97
100,000,000 1.12 1.72 2.80 -91.90

1,000,000,00d 1.01 1.05 1.10 1.28




best understood as the sum of the homogeneous and inhomogeneous derivatives
in Tables 2 and 3. In Table 2 we see that the homogeneous derivative (deriva-
tive of the homogeneous approximationXq increases with the limit and de-
creases with expected lossesThis makes sense: increasing the limit increases
the riskiness of the portfolio and hené& Increasing expected losses yields a
diversification benefit and decreades

Table 3 shows that the inhomogeneous derivative increases:watrentually
tending to zero. This reflects the fact that the aggregate becomes very nearly
homogeneous for large, = > [. Asl increased decreases, reflecting the fact
that the underlying distributiod is becoming more and more inhomogeneous.

Table 4 shows the heterogeneity multiplier, or ratio of the homogeneous deriva-
tive to the total derivative. In a reasonable range between 10M and 100M and
smaller limits, this is of the same order of magnitude as in Meyers’ study.

In practical applications, where the adds-up formula would be used in the
context of allocating surplus between business units or lines of business, expected
losses would be in the 10M to 100M range with limits of 1M to 10M. The Tables
show that in such a range the lack of homogeneity in an insurance portfolio is
material, and would mean the adds-up result would fail to hold by a substantial

amount.



6 Conclusions

In this paper we have explained the importance of the homogeneity assumption
in the derivation of Myers and Read’s “adds-up” result. Proposition 1 shows the
assumption is necessary as well as sufficient. We have used Proposition 1 to prove
two other results in a similar vein, including one involving tail value at risk. Im-
portantly, for practical applications, we have shown that most common families of
aggregate distributions will never satisfy the homogeneity assumption. We have
given several realistic examples to support the general theory. We conclude that,
in a real-world situation, where insurers grow by adding individual risks from

discrete insureds, the “adds-up” result will not hold.
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Figure 1
Comparison of Shifted Lognormal Approximation to Aggregate Distribution for Variety
of Means x and Limits |
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