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Abstract

The Myers and Read capital allocation formula is an important new actu-
arial result. In this paper, we give an overview of the Myers and Read result,
explain its significance to actuaries, and provide a simple proof. Then we
explain the assumption the allocation formula makes on the underlying fam-
ilies of loss distributions as expected losses by-line vary. We show that this
assumption does not hold when insurers grow by writing more risks from a
discrete group of insureds—as is typically the case.

Next, we discuss whether the inhomogeneity in a realistic portfolio of
property casualty risks is material. We show how to decompose the relevant
partial derivatives into homogeneous and inhomogeneous parts and examine
the behaviour of each. We then apply the theory to some realistic examples.
These clearly show that the lack of homogeneity is material. This failure
will severely limit the practical application of the Myers and Read allocation
formula.
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1 Introduction

In an important paper for actuaries, Myers and Read (2001) showed how to allo-

cate the expected policy holder deficit in a multi-line insurance company uniquely

to each line. Their work can also be used to allocate surplus to each line. Previ-

ous work on the allocation problem, including Phillips et al. (1998) and Merton

and Perold (2001), had concluded that such an allocation could be inappropriate

and misleading. The Myers and Read result is, therefore, potentially a significant

breakthrough, with obvious importance to actuaries.

Myers and Read repeatedly stress their result is independent of the distribution

of losses by line and of any correlations between lines that may exist. They say

their “proof requires no assumptions about the joint probability distributions of

line-by-line losses and returns on the firm’s portfolio of assets.” However, while

their result makes no assumptions about thestaticdistribution of losses with fixed

expected loss by line, their derivation does make an important assumption about

how thedynamicdistribution of losses changes shape with changing expected

losses by line. This paper will explain the significance of the latter assumption.

We will show it is a necessary and sufficient condition for the Myers and Read

result to hold. Most importantly, we will show that the assumption does not hold

when insurers grow through the assumption of risk from discrete insureds—as is

typically the case.

For the convenience of readers not familiar with Myers and Read’s work, we

begin with an overview. Consider a simple insurance company which writes two

lines of business. The losses from each line are represented by a random variables



X1 andX2, with meansx1 andx2. Since the company can choose to write more

or less of each line, we assume that the familiesX1(x1) andX2(x2), with varying

meansx1 andx2, are specified. For example, losses from line 1 may be normally

distributed with meanx1 and standard deviation1000 and for line 2 be normally

distributed with meanx2 and coefficient of variationν. Assume the company has

capitalk and total assetsx1 + x2 + k. Also assume that interest rates are zero.

(Myers and Read show how to convert from deterministic investment income to

stochastic income. We focus on deterministic income and set it equal to zero for

simplicity. Nothing of substance is lost in doing so.) Let

I(x1, x2, k) = Pr(X1 + X2 > x1 + x2 + k)

be the probability of insolvency. Finally, assume that the company holds its prob-

ability of insolvency constant, by adjusting writings of each line and the amount

of capital held. LetK(x1, x2) satisfy

I(x1, x2, K(x1, x2)) = constant.

Then, under certain assumptions on the familiesX1(x1) andX2(x2) for varying

x1, x2, but underno assumptions on the distributions of losses given fixedx1 and

x2 we can prove

x1
∂K

∂x1

+ x2
∂K

∂x2

= K. (1)

This is obviously a very useful result: it tells the company that it should allocate

capital at the rate∂K/∂x1 to line 1 and∂K/∂x2 to line 2, and that if it does so

the total capital allocation will add up to actual capital! We prove Equation (1) in



Corollary 2, below. It is very similar to the actual Myers and Read result, which

we prove in Corollary 1.

The main result of the paper, Proposition 1, states the assumptions on the

families Xi(xi) required for Equation (1) to hold. We show that in most real-

world situations these assumptions will, unfortunately, fail to hold. We also give a

straight-forward proof of the Myers and Read “adds-up” result and we prove two

related extensions. Finally we give several examples to illustrate the results.

The necessary distributional assumption highlights the difference between a

continuous “representative insurer” approach, where each insurer assumes a share

of a total market risk, and a discrete approach, where insurers assume risk from

distinct and discrete individual insureds. The Myers and Read result requires a

continuous view as we show in Proposition 1. Examples 4.4 and 4.5 show the

result is not true in a discrete environment. Butsic (1999) used the representative

insurer argument in his application of Myers and Read.

The rest of the paper is laid out as follows. In the next section we prove two

technical lemmas. Section 3 states and proves the main Proposition. Section 4

gives several examples using the main result. Section 5 examines how the Myers

and Read formula fails when losses are inhomogeneous and shows that in realistic

examples the failure will be material.

2 Two Technical Lemmas

Lemma 1 Letf : Rn → R be a differentiable function ofn variables. Then

x1
∂f

∂x1

+ x2
∂f

∂x2

+ · · ·+ xn
∂f

∂xn

= 0 (2)

if and only iff is constant along rays from the origin.



Note: Iff is constant on lines through the origin thenf is calledhomogeneous.

The lemma only requiresf be constant along rays from the origin; along a line

f can change as the line passes through the origin. The functionx 7→ x/|x| is a

good example of what can occur: it changes value from+1 to−1 at zero. Iff is

constant along rays from the origin, then in half spaces through the originf can

be expressed as a function ofxi/xj, i = 1, . . . , n whenxj 6= 0, for eachj. In our

applications of this lemma, the domain off will be the positive quadrant, so there

is no difference between lines through the origin and rays from the origin in the

domain. I would like to thank Christopher Monsour for pointing this out.

Proof Sufficiency: iff is constant along rays through the origin, then by the note

we can assume locally thatf(x1, . . . , xn) = f̃(x1/xn, . . . , xn−1/xn) for some

function f̃ of n− 1 variables. An easy calculation shows

x1
∂f

∂x1

+ · · ·+ xn
∂f

∂xn

=
x1

xn

f̃1 + · · ·+ xn−1

xn

f̃n−1 − xn(
x1

x2
n

f̃1 + · · ·+ xn−1

x2
n

f̃n−1)

= 0,

wheref̃i = ∂f̃(x1, . . . , xn−1)/∂xi.

Necessity: Letv = (x1, . . . , xn) be a differentiable curve, sov = v(t) : R →

Rn, with dv/dt = v. This meansv is equal to its own tangent vector for eacht.

By separating variables it is easy to see thatv is a line through the origin. (It has

the formet(k1, . . . , kn) for constants of integrationki.) Then, by the chain-rule

d

dt
f(v(t)) = x1

∂f

∂x1

+ · · ·+ xn
∂f

∂xn

= 0,



by assumption, so the directional derivative off along each half of any such line

v is constant, i.e.f is constant along rays from the origin, as required. Sincev

never reaches the origin, we cannot assert thatf is constant along lines through

the origin. �

Lemma 2 Letf : Rn → R be a differentiable function ofn variables. Then,

x1
∂f

∂x1

+ · · ·+ xn
∂f

∂xn

= f (3)

on a half-space wherex1 > 0 (resp. x1 < 0) if and only if there exists a differ-

entiable functionf̃ so thatf(x1, . . . , xn) = x1f̃(x2/x1, . . . , xn/x1) on that half

space, and similarly forx2, . . . , xn.

Proof If f(x1, . . . , xn) = x1f̃(x2/x1, . . . , xn/x1) then, using subscripts oñf to

denote partial derivatives,

x1
∂f

∂x1

+ · · ·+ xn
∂f

∂xn

=

(
x1f̃ −

n∑
j=2

xj f̃j−1

)
+

n∑
j=2

xj f̃j−1

= f.

The first sum comes from the partial derivative with respect tox1 and the second

sum comes from all the remaining partials.

On the other hand, supposef satisfies Equation (3) and let̃f(t, s2, . . . , sn) =

f(t, s2t, . . . , snt)/t wheret > 0 (resp.t < 0). We must show̃f is independent of

t. Differentiating

∂

∂t

(
f(t, s2t, . . . , snt)

t

)
= − 1

t2
f +

1

t

(
∂f

∂x1

+
n∑

j=2

sj
∂f

∂xj

)
= 0

and the result follows.�



3 Statement and Proof of Main Result

Before stating the proposition we need to define some more notation. We are

modeling a multi-line insurance company. Losses from each line are modeled by

random variablesXi, i = 1, . . . , n, whereXi has meanxi and distribution func-

tion Fi. We often regardxi as a variable (but not a random variable), so eachXi is

really a family of distributions indexed byxi. Where necessary we emphasize this

by writing Xi(xi). Changes inxi correspond to increasing or decreasing volume

in line i, sincexi is thea priori expected loss.

Assume that the company holds total assets equal tox1 + · · · + xn + k, so in

a very simplistic sense,k is the capital or surplus of the company.

Next, define the probability of insolvency function and the expected policy-

holder deficit function for a single linei as

Ii(xi, k) = Pr(Xi > xi + k) = 1− Fi(xi + k) (4)

and

Di(xi, k) =

∫ ∞

xi+k

t− (xi + k) dFi(t). (5)

In both of these equationsxi is performing double duty: it is the mean ofXi and

in xi + k it determines whereFi is evaluated. To emphasize this we could write

Ii(xi, k) = 1− Fi(xi + k; xi). (6)

Finally, letX = X1 + · · · + Xn be the total losses with distribution functionF .

Define insolvency and deficit functions for the whole company as

I(x1, . . . , xn, k) = Pr(
∑

Xi >
∑

xi + k) = 1− F (x1 + · · ·+ xn + k) (7)



and

D(x1, . . . , xn, k) =

∫
· · ·
∫

∑
ti>

∑
xi+k

t1 + · · ·+ tn− (x1 + · · ·+ xn + k) dF (t1, . . . , tn).

(8)

The following definition is key:

Definition 1 A family of random variablesX(x) with E(X(x)) ∝ x is called

homogeneousif there exists a single random variableU so thatX(x)/x has the

same distribution asU for all x.

Homogeneity is Myers and Read’s only distributional assumption, and it means

that losses come from a representative insurer. The requirement thatU is in-

dependent ofx is important—after all, any random variable can be written as

X = E(X)(X/E(X))! An exponential variableX with meanx is a homoge-

neous family, sinceX = xU whereU has an exponential distribution with mean

1. However, a normal variable with meanx and standard deviation1 is not homo-

geneous.

In order to compute expressions like∂I/∂x we need to know how the family

X(x) changes shape with changes inx. We need to work withX(x + ε) as well

asX(x) because

∂I

∂x
= − d

dx
F (x + k; x)

= − lim
ε→0

F (x + k + ε; x)− F (x + k; x)

ε

− lim
ε→0

F (x + k; x + ε)− F (x + k; x)

ε
.



The partial derivative has astaticpart, where the mean of the underlying variable

does not change, and adynamicpart, where the point of evaluation is fixed but

the mean changes. This shows computing partial derivatives such as∂I/∂x is

inextricably linked to families of random variables.

With this notation we can now state our main result.

Proposition 1 The following are equivalent.

1. For eachi = 1, . . . , n, Xi(xi) is a homogeneous family of random variables.

2. For eachi = 1, . . . , n

xi
∂Ii

∂xi

+ k
∂Ii

∂k
= 0. (9)

3. For eachi = 1, . . . , n

xi
∂Di

∂xi

+ k
∂Di

∂k
= D. (10)

4. We have equality

x1
∂I

∂x1

+ · · ·+ xn
∂I

∂xn

+ k
∂I

∂k
= 0. (11)

5. We have equality

x1
∂D

∂x1

+ · · ·+ xn
∂D

∂xn

+ k
∂D

∂k
= D. (12)



The proposition says that each of the five statements holds if and only if all

the other four hold. Put another way, if one of the five fails to hold then the other

four will also fail. This means that we can construct simple one line examples

and can use items 2 and 3 generalize to the multi-line case. This simplifies the

mathematics of the examples.

Proof We shall prove (4) implies (2) implies (1) implies (4), and then (5) im-

plies (3) implies (1) implies (5), which is enough to show all the statements are

equivalent.

(4) implies (2): Setxj = 0 for j 6= i in Equation (11) to get Equation (9). This

can also be seen geometrically using Lemma 1 which saysI is constant along rays

from the origin. ThereforeIi, which is a restriction ofI, is also constant along

such rays.

(2) implies (1): Lemma 1 applied toIi shows there exists a functioñIi so that

Ii(xi, k) = Ĩi(k/xi).

Let Ui = Xi/xi, thenPr(Ui > u) = Ĩi(u− 1) is independent ofxi as required.

(1) implies (4): Assumption (1) implies thatI is constant along rays from the

origin, so the result follows from Lemma 1.

(5) implies (3): Setxj = 0 for j 6= i in Equation (12) to get Equation (10).

(3) implies (1): LetUi = Xi/xi. We have to showPr(Ui > u) is independent of

xi. Let x+ = max(x, 0). Then, notice that

∂D

∂k
=

∂

∂k
E[(
∑

xiUi − (
∑

xi + k))+] (13)

= E[
∂

∂k
(
∑

xiUi − (
∑

xi + k))+] (14)

= E[−1{∑ xiUi>
∑

xi+k}] (15)

= −Pr(
∑

xiUi >
∑

xi + k) (16)



is minus the probability of default. Next, use Lemma 2 to defineD̃i so that

Di(xi, k) = xiD̃i(k/xi). Therefore

∂Di

∂k
= D̃′

i(k/xi)

and so

Pr(Ui > u) = −D̃′
i(u− 1)

is independent ofxi as required.

(1) implies (5): Assumption (1) shows we can writeD as

D(x1, . . . , xn, k) = kD̃(x1/k, . . . , xn/k)

so the result follows from Lemma 2.�

The results in Proposition 1 are clearly similar to Myers and Read’s results

but they are not exactly the same. We shall now explain how to derive their exact

result and prove some other similar results. For simplicity we shall assumen = 2

and work with justx1 andx2 in the rest of the paper.

Myers and Read’s “adds-up” result (their Equation A1-3) involves computing

the marginal increase in surplus required to hold the default value constant, given

a marginal increase in a particular line. We have been taking a slightly different

approach: if we hold the surplus and default value constant, what decrease is

needed in line 2 to offset an increase in line 1? However, it is easy to reconcile the

two approaches. To do this, letκ1 andκ2 be the marginal surplus requirements for

each line. Note thatκ1 andκ2 are ratios whereask is a dollar amount. Myers and



Read then use a capital amountk = κ1x + κ2x2 and define the default valueDM

(to distinguish from ourD) as

DM(x1, x2) := D(x1, x2, κ1x1 + κ2x2). (17)

Myers and Read use the following notation in their Appendix 1. They write

L̃a = LaR̃a, whereLa corresponds to ourx1, R̃a to U1 and L̃a to X1. Thus

L̃a = LaR̃a translates into ourX1 = x1U1, i.e. the homogeneity assumption. The

valueLa is the expected value of̃La at time 0. We are ignoring the time value

of money here by assuming an interest rate of zero. Myers and Read also work

with a fixed interest rate and then integrate over all possible rates—an extra level

of sophistication that need not concern us.

We can now prove their result.

Corollary 1 (Myers and Read) Assume lossesXi form a homogeneous family for

eachi. Then default values “add-up” in that

x1
∂DM

∂x1

+ x2
∂DM

∂x2

= DM . (18)

Proof Computing using the chain-rule and then applying Proposition 1 item 5

in Equation (21) gives:

x1
∂DM

∂x1

+ x2
∂DM

∂x2

= x1(
∂D

∂x1

+ κ1
∂D

∂k
) + x2(

∂D

∂x2

+ κ2
∂D

∂k
) (19)

= x1
∂D

∂x1

+ x2
∂D

∂x2

+ (κ1x1 + κ2x2)
∂D

∂k
(20)

= D(x1, x2, κ1x + κ2x2) (21)

= DM(x1, x2) (22)



as required.�

Simple Proof Here is the simple, self-contained proof we promised in the in-

troduction. Dividing through byx1 in the definition ofD, Equation (8), it is clear

thatDM(x1, x2) = x1D̃M(x2/x1) for some functionD̃M . Thus

x1
∂DM

∂x1

+ x2
∂DM

∂x2

= x1

(
D̃M − x2

x1

∂DM

∂x1

)
+ x2

∂DM

∂x2

= DM

which completes the proof.�

We now prove two more Myers and Read-like results which follow easily from

Proposition 1. Using the implicit function theorem, Burkill and Burkill (1980),

there is a functionK(x1, x2) so thatI(x1, x2, K(x1, x2)) = c is a constant.

Corollary 2 Assume lossesXi form a homogeneous family for eachi. Then sur-

plus values defined by constant probability of default “add-up” in that

x1
∂K

∂x1

+ x2
∂K

∂x2

= K. (23)

Proof Proposition 1 implies

x1
∂I

∂x1

+ x2
∂I

∂x2

+ k
∂I

∂k
= 0. (24)

By the implicit function theorem

∂K

∂x1

= − ∂I

∂x1

/
∂I

∂k
(25)

and similarly forx2. Rearranging Equation (24) and substituting Equation (25)

gives

x1
∂K

∂x1

+ x2
∂K

∂x2

= K, (26)



so surplus values “add-up” just as Myers and Read’s default values add-up.�

Next, use the implicit function theorem to define a functionL(x1, x2) so that

D(x1, x2, L(x1, x2)) = c.

Corollary 3 Assume lossesXi form a homogeneous family for eachi. Then sur-

plus values defined by constant expected policy holder deficit satisfy

x1
∂L

∂x1

+ x2
∂L

∂x2

= L + T (27)

whereT = TV aR(x1 + x2 + L(x1 + x2)) is the tail-value at risk beyondx1 +

x2 + L(x1 + x2).

Proof Using the implicit function theorem again, and dividing Proposition 1

item 5 by−∂D/∂k, we get

x1
∂L

∂x1

+ x2
∂L

∂x2

= L−D/
∂D

∂k
. (28)

Thus, by Equation (16)

x1
∂L

∂x1

+ x2
∂L

∂x2

= L + T

whereT is the tail-value at risk.�

4 Examples

By Proposition 1, we can give one-dimensional examples and know they will

extend to the multivariate situation as expected. We make use of this simplification

in several of the examples below.



4.1 Examples of Homogeneity

Homogeneous families can be made from a wide variety of continuous distribu-

tions. For example, varying the scale parameterθ and holding all other parameters

constant for any of the distributions listed in Appendix A of Klugman, Panjer and

Willmot (1998) which have a scale parameterθ, will produce a homogeneous

family. This includes suitable parameterizations of the transformed beta, Burr,

generalized Pareto, Pareto, transformed gamma, gamma, Weibull, exponential,

and inverse Gaussian. By Proposition 1, sums of selected from such families will

also be homogeneous. Also, trivially, ifX is any distribution with mean 1 then

xX is a homogeneous family asx varies.

For example ifX has an exponential distribution with meanx, soPr(X >

t) = exp(−t/x), thenX = xU whereU has an exponential distribution with

mean1. This follows since

Pr(X > t) = exp(−t/x) = Pr(U > t/x).

Here

I(x, k) = Pr(X > x + k) = exp(−k/x)/e

which clearly satisfies item 2 of Proposition 1.



4.2 Simple Example where Homogeneity Fails

It is easy to construct examples where the homogeneity assumption fails. All

members of a homogeneous family have the same coefficient of variation, there-

fore a family with a non-constant coefficient of variation will not be homogeneous.

For example, letX be normally distributed with meanx and constant standard de-

viation1. ThenX is not homogeneous. By definitionI(x, k) = 1− Φ(k) so

x
∂I

∂x
+ k

∂I

∂k
= −kφ(k) 6= 0,

whereΦ andφ are the distribution and density for the standard normal.

If the reader is skeptical about using only one variable, he or she will find it

easy to construct multivariate distribution examples using normal variables. For

example, consider what Corollary 2 says whenX1 is distributedN(x1, 1) andX2

is distributedN(x2, 1). X1 + X2 is distributedN(x1 + x2,
√

2), so

I(x1, x2, k) = 1− Φ(k/
√

2). (29)

Thus∂K/∂xi = (∂I/∂xi)/(∂I/∂k) = 0 for i = 1, 2. Corollary 2 then readsK =

0, which is absurd! This shows the importance of the homogeneity assumption

for the results derived from Proposition 1, including Myers and Read’s allocation

formula. This example can also be generalized to the case whereX1 andX2 are

correlated.



4.3 Homogeneity Fails with Constant Coefficient of Variation

It is less simple, but still possible, to construct examples where the coefficient of

variation is a constant function of the mean, but which nevertheless fail to satisfy

the homogeneity assumption.

For example letX(x) be distributed as a gamma random variable with param-

etersα = 4x2, θ = 1/2 shifted byx(1 − 2x). Here we are using the Klugman,

Panjer, Willmot parameterization sof(t; α, θ) = (t/θ)αe−t/θ/tΓ(α). It is easy

to checkX(x) has meanx, constant coefficient of variation 1 and skewness1/x,

since the skewness of a gammaα, θ is 2/
√

α. I is given by the incomplete gamma

function,I(x, k) = Γ(4x2, 4x2 + 2k), which does not satisfy the assumptions of

Lemma 1, soX(x) is not homogeneous. The reason is clear: the familyX(x)

changes shape withx and so cannot be homogeneous.

Taking this a step further, it is possible to construct a family all of whose higher

cumulants (coefficient of variation, skewness, kurtosis, etc.) are independent of

the mean, just as they would be for a homogeneous family, but which neverthe-

less fails to be homogeneous. To do this, letU be a lognormal random variable

with ln(U) distributed as a standard normal. LetV be a random variable density

functionfV (x) = fU(x)(1 + sin(2π log(x))), wherefU is the density ofU . Then

U andV have the same moments—see Feller (1971), Chapter VII.3. This type of

trick is possible because the moments of a lognormal grow too quickly to ensure it

is determined by its moments—see also Billingsley (1986) Section 30. LetX(x)

be a mixture ofxU andxV with weightsp(x) = x/(x + 1) and1− p(x). Then

I(x, k) := p(x)Pr(U > 1 + k/x) + (1− p(x))Pr(V > 1 + k/x)



is not a function ofk/x so the result follows from Lemma 1 and Proposition 1.

Alternatively, writingIU(x, k) = Pr(xU > x + k) and similarly forV one can

compute directly

x
∂I

∂x
+ k

∂I

∂k
= xp′(x)(IU(x, k)− IV (x, k)) 6= 0

sincexU andxV are homogeneous,xp′(x) > 0 by construction, andIU−IV 6= 0.

ThusX(x) is not a homogeneous family.

4.4 Aggregate Distributions are Not Homogeneous

Example 4.1 shows a large number of continuous variables satisfy the homogene-

ity assumption. For our purposes, however, there is a very important class which

does not: aggregate loss distributions.

Let A = X1 + · · ·XN where theXi are independent, identically distributed

severities andN is a frequency distribution with meann. Increasing expected

losses in this model involves increasingn. SupposeN has contagionc, so, as

suggested by Heckman and Meyers (1983),Var(N) = n(1 + cn). Then

CV(A)2 =
CV(X)2

n
+

1

n
+ c

is clearly not independent ofn. ThusA does not satisfy the homogeneity assump-

tion. Just as for Example 4.3, the aggregate loss distribution changes shape as

n increases. This is illustrated in the figure below, which shows six aggregate

loss distributions with the same severity distribution but different claim counts,

indicated by “CC=20” forn = 20, and so forth. The individual densities have



been scaled so that if the family were homogeneous then all the densities would

be identical and only one line would appear in the plot.

If aggregate distributions can be approximated by various of the parametric

distributions of Example 4.1, and if those distributions are homogeneous, does

the result of this Example really matter? The answer is emphatically “yes”. This

example shows that in the real world, where insurers grow by adding discrete

insureds, the “adds-up” results do not hold. The way the aggregate distribution

changes shape forces parameters other than the scale parameter to change as the

mean increases, and thus homogeneity is lost.

Aggregate Distributions are Not Homogeneous
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4.5 Compound Poisson Distributions are not Homogeneous

This example proves that various aggregate distributions can never be homoge-

neous families.



Proposition 2 LetA be a compound Poisson aggregate distribution

A = X1 + · · ·+ XN (30)

whereN has a Poisson distribution with meann and theXi are independent and

identically distributed. ThenA(n) is not a homogeneous family.

Proof The moment generating function ofN is MN(t) = exp(n(et − 1)). The

moment generating function ofA is thereforeMA(t) = exp(n(MX(t)−1)) where

MX is the moment generating function for severityX. If A is homogeneous with

A distributed asnU for some fixedU , thenMA(t) = MU(nt). Thus

n(MX(t)− 1) = log(MU(nt)).

Differentiating with respect ton shows

(MX(t)− 1) = tM ′
U(nt))/MU(nt).

ThereforeM ′
U(t)/MU(t) must be a constant, since the left hand side is indepen-

dent ofn. HenceMU(t) = exp(ct) for a constantc, and soU = c is a degenerate

distribution. But this is impossible unlessN is constant orXi ≡ 0. �

Corollary 4 An aggregate distribution with frequency componentN which is a

mixture of Poisson distributions cannot be a homogeneous family.

Proof Condition on the mixing parameter and apply Proposition 2.�

For example, the Corollary applies to negative binomial and Poisson-inverse

Gaussian frequency distributions.



5 Is Inhomogeneity Material?

In this section we will show that the inhomogeneity inherent in a typical portfolio

of property casualty risks is sufficiently large to invalidate the Myers and Read al-

location formula. By Proposition 1, we can discuss inhomogeneity in the context

of one random variable, rather than two or more, which simplifies the mathemat-

ics.

Let X(x) be a smooth family of random variables withE(X(x)) = x. Let

F (t, x) = Pr(X(x) < t) be the distribution function ofX(x) and f(t, x) =

∂F/∂t be its density.

Recall thatX(x) is homogeneous (with respect to the mean) if there exists a

random variableU so that

X(x) = xU (31)

for all x. In this case, letFU andfU be the distribution and density functions of

U .

Recall also that the expected default, with capital ratioκ, is defined as

D(x) =

∫ ∞

x(1+κ)

(t− x(1 + κ))f(t, x)dt. (32)

Note thatx(1 + κ) represents total assets:x from the loss andxκ from allocated

capital. In a more sophisticated model we could consider profit in the premium;

here we simply assume this is subsumed into the constantκ.

By Proposition 1 we know

x
∂D

∂x
= D (33)

if and only if X(x) is a homogeneous family, which is then equivalent to the

Myers-Read adds-up result.



5.1 Heuristics

A homogeneous family offers no diversification benefit as the mean increases.

Property casualty insurance is based on diversification, and the inhomogeneity

inherent in a portfolio of insurance risks means that the relative riskiness of the

portfolio decreases as expected losses increase. Since a lower risk portfolio has a

lower expected default, one would expect that

x
∂D

∂x
< D (34)

for an inhomogeneous insurance portfolio.

Meyers (2003) introduces the heterogeneity multiplier, which is a constantλ

defined so that

λx
∂D

∂x
= D. (35)

He shows thatλ is typically greater than 1 (as expected). In further unpublished

work, Meyers uses empirical data to estimate thatλ is in the range 1.5 to 2.5, de-

pending on the size of the company. This suggests that inhomogeneity is material.

If X is homogeneous then, for allκ > 0,

x
∂D

∂x
= D ≥ 0. (36)

However, intuitively, one would expect that for a large enough capital ratioκ it

should be possible for the extra capital associated with writing more business to

more than offset the extra risk. This would imply that

x
∂D

∂x
< 0 (37)

should be possible for sufficiently largeκ. This is another difference between

homogeneous and inhomogeneous families.



5.2 Theory

In order to assess the impact of inhomogeneity, we will break the derivative

∂D/∂x into two pieces using a homogeneous approximation to the familyX(x).

For a fixedx, define a new homogeneous familyY (y) by

Y (y) =
y

x
X(x). (38)

Let G(t, y) andg(t, y) be the distribution and density functions ofY . Note that

Y (x) = X(x) and that

g(t, y) = f(tx/y, x)x/y. (39)

If X is already homogeneous, then clearlyY (y) = X(y) for all y. Finally define

Ex(y) to be the expected default value ofY ,

Ex(y) =

∫ ∞

y(1+κ)

(t− y(1 + κ))g(t, y)dt. (40)

The subscriptx onE highlights the pointx at which we have chosen to “homog-

enize”X. By definitionEx(x) = D(x).

We can now compute

∂D

∂x
= lim

ε→0

D(x + ε)−D(x)

ε
(41)

= lim
ε→0

D(x + ε)− Ex(x + ε) + Ex(x + ε)−D(x)

ε
(42)

= lim
ε→0

D(x + ε)− Ex(x + ε)

ε
+ lim

ε→0

Ex(x + ε)−D(x)

ε
(43)

= I(x) + lim
ε→0

Ex(x + ε)− Ex(x)

ε
(44)

= I(x) +
D(x)

x
(45)



whereI(x) is defined by the first limit, and we have used the fact thatY is homo-

geneous to replace∂Ex/∂x with Ex(x)/x = D(x)/x.

We can now prove the main lemma of this section.

Lemma 3 With the above notation

I(x) =

∫ ∞

x(1+κ)

(s− x(1 + κ))

(
∂f

∂x
+

s

x

∂f

∂t
+

f(s, x)

x

)
ds. (46)

Proof Substitutes = tx/(x + ε) in the limit definingI, swap the limit and

integral (Lebesgue’s dominated convergence theorem), and use the fact that the

limit of a product (quotient) is the product (quotient) of the limits to get

I(x) =

∫ ∞

x(1+κ)

(s− x(1 + κ)) lim
ε→0

(
(x + ε)f(s + sε/x, x + ε)− xf(s, x)

(x + ε)ε

)
ds.

(47)

Now add and subtract a term(x + ε)f(s + sε/x, x) in the limit, re-arrange and

cancel. The result follows.�

We will call I(x) the inhomogeneous derivative ofD with respect tox. We

will use the standard notationf1 = ∂f/∂t andf2 = ∂f/∂x.

If X is homogeneous then

f(t, x) = fU(t/x)/x (48)

f1(t, x) = f ′U(t/x)/x2 (49)

f2(t, x) = −tf ′U/x2 − fU/x2 (50)

and so

f2 +
s

x
f1 +

1

x
f = 0. (51)



Thus ifX is homogeneousI(x) = 0 as expected.

The Lemma shows that

xI(x) =

∫ ∞

x(1+κ)

(s− x(1 + κ))(xf2 + sf1)ds + D(x), (52)

and so

x
∂D

∂x
=

∫ ∞

x(1+κ)

(s− x(1 + κ))(xf2 + sf1)ds + 2D(x). (53)

WhenX is homogeneous, the integral inI exactly cancels out the extraD term. In

the tail of the distribution, we expectf1 < 0, because the density will eventually

be decreasing witht, andf2 > 0 because for a givent the densityf(t, x) will

increase as the meanx increases. The exact balance of these two terms depends

on the degree of inhomogeneity.

5.3 Examples of Inhomogeneity

At this point we have developed enough general theory. For a realistic insurance

portfolio we expectx∂D/∂x < D, and possibly thatx∂D/∂x < 0. In order to

test the magnitude of these effects we will use the following model.

Let A(x) be an aggregate loss distribution with expected lossesx, severity

componentS(l) and frequency componentN , so

A(x) = S(l)1 + · · ·+ S(l)N . (54)

We assume thatS(l) = min(S, l) results from applying a limitl to a fixed un-

limited severityS. In the exampleS is chosen to be reasonably close to ISO’s

Premises and Operations B curve. The frequency distributionN is negative bino-

mial with claim countn = x/E(S(l)) and contagionc, soVar(N) = n(1+cn). In



Table 1: Total Derivative∂D/∂x

x| l 1,000,000 5,000,000 10,000,000 100,000,000
10,000,000 0.28% -0.42% -0.37% 3.74%
50,000,000 0.39% 0.30% 0.13% -0.40%

100,000,000 0.39% 0.37% 0.31% -0.02%
1,000,000,000 0.39% 0.39% 0.39% 0.39%

the tables belowc = 0.15, corresponding to an asymptotic coefficient of variation

of A(x) of 38.7%. The capital ratioκ = 1, so the expected loss to surplus ratio is

1 to 1.

In order to compute the necessary derivatives, we will approximateA(x) with

a shifted lognormal distribution, using the method of moments to match the mean,

variance, and skewness. For large portfolios, the shifted lognormal is a very good

approximation to the true aggregate distribution. This can be seen by comparing

the result of using FFTs to compute the true aggregate with the shifted lognormal

approximation. Figure 1 shows that the approximation is quite spectacularly good,

particularly in the relevant range beyond2x. Regardless of whether you believe

this is a good approximation or not, the approximation has qualitatively the correct

shape and behaviour asx changes.

Let X(x) be the shifted lognormal approximation toA(x). If X(x) has pa-

rametersτ , µ, andσ, soln(Y − τ) is distributedN(µ, σ), then the homogeneous

approximationY (y) to X(x) has parametersy/xτ , ln(y/x)+µ, andσ. Therefore

we can computeI andD explicitly.

In each table, expected loss amountsx are shown vertically and different limits

l are shown across the columns. Patterns in Table 1 are hard to see directly, and are



Table 2: Homogeneous Derivative= Expected Default Ratio= D/x

x| l 1,000,000 5,000,000 10,000,000 100,000,000
10,000,000 0.97% 4.21% 8.12% 19.27%
50,000,000 0.49% 0.92% 1.49% 3.99%

100,000,000 0.44% 0.63% 0.87% 1.90%
1,000,000,000 0.40% 0.41% 0.43% 0.49%

Table 3: Inhomogeneous DerivativeI(x) = ∂D/∂x−D/x

x| l 1,000,000 5,000,000 10,000,000 100,000,000
10,000,000 -0.69% -4.64% -8.49% -15.53%
50,000,000 -0.10% -0.62% -1.36% -4.39%

100,000,000 -0.05% -0.26% -0.56% -1.92%
1,000,000,000 0.00% -0.02% -0.04% -0.11%

Table 4: Heterogeneity Multiplier

x| l 1,000,000 5,000,000 10,000,000 100,000,000
10,000,000 3.45 -9.96 -21.66 5.15
50,000,000 1.26 3.10 11.72 -9.97

100,000,000 1.12 1.72 2.80 -91.90
1,000,000,000 1.01 1.05 1.10 1.28



best understood as the sum of the homogeneous and inhomogeneous derivatives

in Tables 2 and 3. In Table 2 we see that the homogeneous derivative (deriva-

tive of the homogeneous approximation toX) increases with the limitl and de-

creases with expected lossesx. This makes sense: increasing the limit increases

the riskiness of the portfolio and henceD. Increasing expected losses yields a

diversification benefit and decreasesD.

Table 3 shows that the inhomogeneous derivative increases withx, eventually

tending to zero. This reflects the fact that the aggregate becomes very nearly

homogeneous for largex, x � l. As l increasesI decreases, reflecting the fact

that the underlying distributionA is becoming more and more inhomogeneous.

Table 4 shows the heterogeneity multiplier, or ratio of the homogeneous deriva-

tive to the total derivative. In a reasonable range ofx between 10M and 100M and

smaller limits, this is of the same order of magnitude as in Meyers’ study.

In practical applications, where the adds-up formula would be used in the

context of allocating surplus between business units or lines of business, expected

losses would be in the 10M to 100M range with limits of 1M to 10M. The Tables

show that in such a range the lack of homogeneity in an insurance portfolio is

material, and would mean the adds-up result would fail to hold by a substantial

amount.



6 Conclusions

In this paper we have explained the importance of the homogeneity assumption

in the derivation of Myers and Read’s “adds-up” result. Proposition 1 shows the

assumption is necessary as well as sufficient. We have used Proposition 1 to prove

two other results in a similar vein, including one involving tail value at risk. Im-

portantly, for practical applications, we have shown that most common families of

aggregate distributions will never satisfy the homogeneity assumption. We have

given several realistic examples to support the general theory. We conclude that,

in a real-world situation, where insurers grow by adding individual risks from

discrete insureds, the “adds-up” result will not hold.
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Figure 1
Comparison of Shifted Lognormal Approximation to Aggregate Distribution for Variety 
of Means x and Limits l


