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Abstract

The Myers and Read capital allocation formula is an important new actu-
arial result. In this paper, we give an overview of the Myers and Read result,
explain its significance to actuaries, and provide a simple proof. Then we
explain the assumption the allocation formula makes on the underlying fam-
ilies of loss distributions as expected losses by line vary. We show that this
assumption does not hold when insurers grow by writing more risks from
a discrete group of insureds—as is typically the case. Next, we show that
this failure has a material impact on the predicted results in a realistically
sized portfolio of property casualty risks. This failure will severely limit the
practical application of the Myers and Read allocation formula.
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1 Introduction

In an important paper for actuaries, Myers and Read (2001) showed how to allo-

cate the expected policy holder deficit in a multi-line insurance company uniquely

to each line. Their work can also be used to allocate surplus to each line. Previ-

ous work on the allocation problem, including Phillips et al. (1998) and Merton

and Perold (2001), had concluded that such an allocation could be inappropriate

and misleading. The Myers and Read result is, therefore, a potentially significant

breakthrough of great importance to actuaries.

Myers and Read repeatedly stress their result is independent of the distribution

of losses by line and of any correlations between lines that may exist. They say

their “proof requires no assumptions about the joint probability distributions of

line-by-line losses and returns on the firm’s portfolio of assets.” However, while

their result makes no assumptions about thestaticdistribution of losses with fixed

expected loss by line, their derivation does make an important assumption about

how thedynamicdistribution of losses changes shape as expected losses by line

change. This paper will explain the significance of the latter assumption. We will

show in Proposition 1 that it is a necessary and sufficient condition for the My-

ers and Read result to hold. Most importantly, we will show that the assumption

does not hold when insurers grow through the assumption of risk from discrete

insureds—as they do in the real world. Finally we will show, through three ex-

amples extending those in the original paper, that the predicted adds-up result

materially fails to hold at the scale where it would be applied in practice.
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For the convenience of readers not familiar with Myers and Read’s work, we

begin with an overview. Consider a simple insurance company which writes two

lines of business. The losses from each line are represented by random variables

L1 andL2, with meansl1 and l2. Since the company can choose to write more

or less of each line, we assume that the familiesL1(l1) andL2(l2) with varying

meansl1 andl2 are specified. For example, losses from line 1 may be normally

distributed with meanl1 and standard deviation1000 and for line 2 be normally

distributed with meanl2 and coefficient of variationν. Assume the company has

capitalk = s1l1 + s2l2 for constantss1 ands2, and total assetsl1 + l2 + k. Let

s = k/(l1+l2) be the average capital ratio. Also assume that interest rates are zero.

(Myers and Read show how to convert from deterministic investment income to

stochastic income. We focus on deterministic income and set it equal to zero for

simplicity. Nothing of substance is lost in doing so.) Let

DM(l1, l2) =

∫∫
x1+x2>(1+s)(l1+l2)

(x1 + x2 − ((1 + s)(l1 + l2)))f(x1, x2)dx1dx2

be the expected default with respect to the joint probability densityf of L1(l1),

andL2(l2). It does not matter if the densityf is objective, whenD determines the

expected values, or risk adjusted, whenDM determines prices. Then, under cer-

tain assumptions on the distributions of the familiesL1(l1) andL2(l2) for varying

l1, l2, but underno assumptions on the distributions of losses given fixedl1 andl2

Myers and Read prove

l1
∂DM

∂l1
+ l2

∂DM

∂l2
= DM . (1)

This is obviously a very useful result: it gives a canonical allocation of the default

value for the whole company to individual lines of business. It can be used to

allocate surplus, and correctly allocate the cost of surplus to individual lines or

business units.
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2 Notation

We are modeling a multi-line insurance company. Losses from each line are mod-

eled by random variablesLi, i = 1, . . . , n, whereLi has meanli and distribution

functionFi. We will use the notationFi(x; li) = Pr(Li(li) < x) when necessary

to avoid any ambiguity. We often regardli as a variable (but not a random vari-

able), so eachLi is really a family of distributions indexed byli. Where necessary

we emphasize this by writingLi(li). Changes inli correspond to increasing or

decreasing volume in linei, sinceli is thea priori expected loss. These changes

can come about by assuming risks from more insureds, which is typically a dis-

crete change, or by assuming risk from given insureds for a longer period of time,

which would be a continuous change.

Assume that the company holds total assets equal tol1 + · · ·+ ln + k, so in a

very simplistic sense,k is the capital or surplus of the company.

Next, define the probability of insolvency function and the expected policy-

holder deficit function for a single linei as

Ii(li, k) = Pr(Li > li + k) = 1− Fi(li + k)

and

Di(li, k) =

∫ ∞

li+k

t− (li + k) dFi(t).

In both of these equationsli is performing double duty. It is the mean ofLi and in

li + k it determines whereFi is evaluated. To emphasize this we could write

Ii(li, k) = 1− Fi(li + k; li).
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Similar remarks hold forDi. Di is not the expected policyholder deficit for line

i within a multiline company, rather it is the expected policyholder deficit for a

monoline company which only writes linei.

Finally, letF be the multivariate distribution of(L1(l1), . . . , Ln(ln)), let L =

L1 + · · ·+ Ln be the total losses and letFs be the distribution function ofL. Both

F andFs depend on(l1, . . . , ln). Define insolvency and expected deficit functions

for the whole company by

I(l1, . . . , ln, k) = Pr(
∑

Li > k +
∑

li) = 1− Fs(l1 + · · ·+ ln + k)

and

D(l1, . . . , ln, k) =

∫
· · ·
∫

∑
ti>k+

∑
li

t1 + · · ·+tn−(l1 + · · ·+ ln +k) dF (t1, . . . , tn). (2)

With this notationDi(li, k) = D(0, . . . , li, 0, . . . , 0, k).

We focus on families of random variablesL(l) because in order to compute

expressions like∂I/∂l we need to know how the distributionL(l) changes shape

with changes inl. We need to work withL(l + ε) as well asL(l) because

∂I

∂l
= − d

dl
F (l + k; l)

= − lim
ε→0

F (l + k + ε; l)− F (l + k; l)

ε

− lim
ε→0

F (l + k; l + ε)− F (l + k; l)

ε
.

The partial derivative has astaticpart, where the mean of the underlying variable

does not change, and adynamicpart, where the point of evaluation is fixed but

the mean changes. This shows computing partial derivatives such as∂I/∂l is

inextricably linked tofamiliesof random variables.
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3 Homogeneous Distributions and
Homogeneous Prices

Myers and Read make one distributional assumption in their work, which we call

homogeneity. In this section we explain how homogeneity is a natural assump-

tion to make for assets but not for a portfolio of insurance risks. We also show

that it is possible to construct arbitrage free homogeneous pricing functionals on

inhomogeneous outcome distributions.

Consider two portfolios, one consisting of stock in a given company and the

other consisting of insurance policies written on identical risks. Assume that the

price of the stock is 1 today and letX(n) be the price of a portfolio ofn of these

stocks one year from now. IfS is the price distribution of the stock one year from

now, then the value of the portfolioX(n) has the same distribution asnS. More

generally, returns from an investment advisor are likely to be similarly homoge-

neous; as the advisor gets more funds to invest he will increase his holdings in

existing positions, and not suddenly start to invest in different asset classes.

Next, assume that the expected losses from each insurance policy in the port-

folio has a present value of 1 today. LetL(n) be the present value of total losses

from a portfolio ofn policies. If R is the distribution of losses from one policy,

with E(R) = 1, then the distribution ofL(n) is the same as the distribution of

R1 + · · · + Rn, but it is not the same asnR, unless theRi are perfectly corre-

lated. Since diversification is the basis for insurance, we will assume that theRi

are identically distributed, but not perfectly correlated. Realistically, theRi will

likely be somewhat correlated.
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These two examples highlight an important difference between portfolios of

investment-type risks and insurance-type risks. For a stock or other financial asset

the meaning of2X is clear; we own two identical, equivalent and interchangeable

stocks with the same price distribution now and at all future times. In contrast, for

insurance risks, regulations regarding insurable interest and over-insurance make

an interpretation as a policy which pays $2 for each dollar loss unrealistic. In

insurance, when we double expected losses we write twice as many policies and

get a distributionR1 + R2, with Ri identically distributed, but less than perfectly

correlated. A car can only have one driver; it is physically impossible to have

two auto policies with perfectly correlated experience! Two auto policies, even

if they have identical loss distributions, are subject to different random outcomes

and together they are equivalent to a portfolio of stock in two different companies,

not two stocks in one company.

The distinction between these two types of behaviour is crucial to the points

we are making in this paper. To make the concept precise here is a formal defini-

tion.

Definition 1 A family of random variablesL(l) with E(L(l)) proportional tol is

called homogeneous in distribution, or simplyhomogeneous, if there exists a

single random variableU so thatL(l) has the same distribution aslU for all l.

Families which are not homogeneous are calledinhomogeneous.
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The requirement thatU is independent ofl is important since any random vari-

able can be written asL = E(L)(L/E(L)). The future value of multiples of a

given stock is clearly homogeneous in distribution. On the other hand, the present

value of losses in a portfolio of identically distributed insurance policies is not ho-

mogeneous. An exponential variableL with meanl is a parametric homogeneous

family, sinceL = lU whereU has an exponential distribution with mean1. A

normal variable with meanl and standard deviation1 is not homogeneous.

Homogeneity is Myers and Read’s only distributional assumption. For it to

hold in the way they assume, companies would have to quota share a portion of

the entire market in a line, which Butsic (1999) calls a representative insurer ap-

proach. There is no major line of US property casualty insurance which operates

in this way; it is an unrealistic assumption.

We now turn to the homogeneity of prices. The Fundamental Theorem of

Asset Pricing states that the absence of arbitrage in a pricing system is equivalent

to the existence of a positive linear pricing rule, see Dybvig and Ross (1989). A

pricing rule is a functionq which assigns a priceq(X) to a random payoffX. The

functionq is linear if for two random payoffsX andY we have

q(aX + bY ) = aq(X) + bq(Y )

for all constantsa and b. If q(aX) = aq(X) then q is called homogeneous.

Homogeneity is a necessary condition forq to be arbitrage free. It is obvious that

a sufficiently liquid market cannot be arbitrage free if the pricing functional is not

homogeneous.
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If X(x) is a homogeneous family of random variables andq is a homoge-

neous pricing rule thenq(X(x)) = q(xX(1)) = xq(X(1)). If the family is not

homogeneous then we need more assumptions in order to make similar state-

ments. IfL(l) is an inhomogeneous family of random variables, but it is ad-

ditive in the sense thatL(l + m) = L(l) + L(m), then if q is linear we have

q(L(l + m)) = q(L(l) + L(m)) = q(L(l)) + q(L(m)). From this it follows by

continuity thatq(L(l)) = lq(L(1)) and we recover a homogeneous pricing rule.

In the insurance context, whereL(l) is typically modeled as a compound Pois-

son process or a mixed compound Poisson process, we have additivity (in fact,

infinite divisibility). Thus it is possible for an inhomogeneous family to have a

homogeneous and arbitrage free pricing rule.

Several specific examples of arbitrage free pricing functionals for inhomo-

geneous insurance distributions have been given in the literature. The first was

the fundamental paper of Delbaen and Haezendonck (1989) which was then ex-

tended by Meister (1995). The key results are also reviewed in Embrechts and

Meister (1995). Delbaen and Haezendonck show that if there are sufficiently

many reinsurance markets then linear pricing functionals transform compound

Poisson distributions to compound Poissons distributions. They then character-

ize the measures equivalent to a given compound Poisson which are themselves

compound Poisson and show these are characterized via a separate adjustment

of the frequency and severity. Specifically they show that an aggregate distri-

bution Lt = R1 + · · · + RN(t), with Ri independent and identically distributed

andN(t) Poisson with meanλt transforms to a compound Poisson of the form
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R̃t = R̃1 + · · · + R̃Ñ(t) whereÑ(t) is Poisson with meanλ′t and the Radon-

Nikodym derivative ofR̃ with respect toR is given by

dR̃

dR
= exp(β(x))/ER(exp(β(R)))

for some increasing functionβ. The transformed distribution can be regarded as

risk-adjusted and prices can be computed as (linear) expected values with respect

to the risk-adjusted probabilities, just as pricing is done on the asset side. Meister

extends Delbaen and Haezendonck to mixed compound Poisson distributions.

To conclude, in this section we have defined homogeneous families of random

variables and have shown that non-homogeneous families can still be priced using

an arbitrage-free positive linear pricing functional. The failure of the adds-up

result for inhomogeneous distributions is caused by different assumptions about

the shape of the loss distribution rather than the lack of an arbitrage free pricing

functional.

4 Statement and Proof of Main Result

We can now state our main result. The result depends on two technical lemmas

which are stated and proved in Appendix 1.

Proposition 1 The following are equivalent.

1. For eachi = 1, . . . , n, Li(li) is a homogeneous family of random variables.

2. For eachi = 1, . . . , n

li
∂Ii

∂li
+ k

∂Ii

∂k
= 0. (3)
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3. For eachi = 1, . . . , n

li
∂Di

∂li
+ k

∂Di

∂k
= Di. (4)

4. We have equality

l1
∂I

∂l1
+ · · ·+ ln

∂I

∂ln
+ k

∂I

∂k
= 0. (5)

5. We have equality

l1
∂D

∂l1
+ · · ·+ ln

∂D

∂ln
+ k

∂D

∂k
= D. (6)

The proposition says that each of the five statements holds if and only if all the

other four hold. Put another way, if one of the five fails to hold then the other four

will also fail. This means we can construct simple one line examples and can use

items 2 and 3 generalize to the multi-line case, which simplifies the mathematics

of the examples.

Proof We shall prove (4) implies (2) implies (1) implies (4), and then (5) im-

plies (3) implies (1) implies (5), which is enough to show all the statements are

equivalent.

(4) implies (2): Setlj = 0 for j 6= i in Equation (5) to get Equation (3). This can

also be seen geometrically using Lemma 1 which saysI is constant along rays

from the origin. ThereforeIi, which is a restriction ofI, is also constant along

such rays.

(2) implies (1): Lemma 1 applied toIi shows there exists a functioñIi so that

Ii(li, k) = Ĩi(k/li).
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Let Ui = Li/li, thenPr(Ui > u) = Ĩi(u− 1) is independent ofli as required.

(1) implies (4): Assumption (1) implies thatI is constant along rays from the

origin, so the result follows from Lemma 1.

(5) implies (3): Setlj = 0 for j 6= i in Equation (6) to get Equation (4).

(3) implies (1): LetUi = Li/li. We have to showPr(Ui > u) is independent ofli.

Let l+ = max(l, 0). Then, notice that

∂D

∂k
=

∂

∂k
E[(liUi − (li + k))+]

= E[
∂

∂k
(liUi − (li + k))+]

= E[−1{liUi>li+k}]

= −Pr(liUi > li + k) (7)

is minus the probability of default. Next, use Lemma 2 to defineD̃i so that

Di(li, k) = liD̃i(k/li). Therefore

∂Di

∂k
= D̃′

i(k/li)

and so

Pr(Ui > u) = −D̃′
i(u− 1)

is independent ofli as required.

(1) implies (5): Assumption (1) shows we can writeD as

D(l1, . . . , ln, k) = kD̃(l1/k, . . . , ln/k)

so the result follows from Lemma 2.�
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The results in Proposition 1 are clearly similar to Myers and Read’s results

but they are not exactly the same. We shall now explain how to derive their exact

result. For simplicity we shall assumen = 2 and work with justl1 andl2 in the

rest of the section.

Myers and Read’s “adds-up” result (their Equation A1-3) involves computing

the marginal increase in surplus required to hold the default value constant, given

a marginal increase in a particular line. We have been taking a slightly different

approach: if we hold the surplus and default value constant, what decrease is

needed in line 2 to offset an increase in line 1? However, it is easy to reconcile the

two approaches. To do this, lets1 ands2 be the marginal surplus requirements for

each line. Note thats1 ands2 are ratios whereask is a dollar amount. Myers and

Read then use a capital amountk = s1l + s2l2 and define the default valueDM

(to distinguish from ourD) as

DM(l1, l2) := D(l1, l2, s1l1 + s2l2).

Myers and Read use the following notation in their Appendix 1. They write

L̃a = LaR̃a, whereLa corresponds to ourl1, R̃a to U1 and L̃a to L1. Thus

L̃a = LaR̃a translates into ourL1 = l1U1, i.e. the homogeneity assumption. The

valueLa is the expected value of̃La at time 0. We are ignoring the time value

of money here by assuming an interest rate of zero. Myers and Read also work

with a fixed interest rate and then integrate over all possible rates—an extra level

of sophistication that need not concern us.

We can now prove their result. In fact, Proposition 1 shows the “adds-up”

result holds if and only if the familiesLi are homogeneous.
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Corollary 1 (Myers and Read) Assume lossesLi form a homogeneous family for

eachi. Then default values “add-up” in that

l1
∂DM

∂l1
+ l2

∂DM

∂l2
= DM .

Proof Computing using the chain-rule and then applying Proposition 1 item 5

in Equation (8) gives:

l1
∂DM

∂l1
+ l2

∂DM

∂l2
= l1(

∂D

∂l1
+ s1

∂D

∂k
) + l2(

∂D

∂l2
+ s2

∂D

∂k
)

= l1
∂D

∂l1
+ l2

∂D

∂l2
+ (s1l1 + s2l2)

∂D

∂k

= D(l1, l2, s1l + s2l2) (8)

= DM(l1, l2)

as required.�

Simple Proof Here is the simple, self-contained proof we promised in the intro-

duction. Dividing through byl1 in the definition ofD, Equation (2), it is clear that

DM(l1, l2) = l1D̃M(l2/l1) for some functionD̃M . Thus

l1
∂DM

∂l1
+ l2

∂DM

∂l2
= l1

(
D̃M − l2

l1

∂DM

∂l1

)
+ l2

∂DM

∂l2

= DM

which completes the proof.�
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5 Examples

5.1 Examples of Homogeneity

Homogeneous families can be made from a wide variety of continuous distribu-

tions. For example, varying the scale parameterθ and holding all other parameters

constant for any of the distributions listed in Appendix A of Klugman, Panjer and

Willmot (1998), which have a scale parameterθ, will produce a homogeneous

family. This includes suitable parameterizations of the transformed beta, Burr,

generalized Pareto, Pareto, transformed gamma, gamma, Weibull, exponential,

and inverse Gaussian. By Proposition 1, sums of selected from such families will

also be homogeneous. Also, trivially, ifU is any distribution with mean 1 thenlU

is a homogeneous family asl varies.

5.2 Examples of Inhomogeneity

It is easy to construct examples where the homogeneity assumption fails. All

members of a homogeneous family have the same coefficient of variation, there-

fore a family with a non-constant coefficient of variation will not be homogeneous.

For example, letL be normally distributed with meanl and constant standard de-

viation1. ThenL is not homogeneous. By definitionI(l, k) = 1− Φ(k) so

l
∂I

∂l
+ k

∂I

∂k
= −kφ(k) 6= 0,

whereΦ andφ are the distribution and density for the standard normal. Propo-

sition 1 implies this expression equals zero ifL is homogeneous. If the reader
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is skeptical about using only one variable, he or she will find it easy to construct

multivariate distribution examples using normal variables.

It is less simple, but still possible, to construct examples where the coefficient

of variation is a constant function of the mean, but which nevertheless fail to

satisfy the homogeneity assumption. For example letL(l) be distributed as a

gamma random variable with parametersα = 4l2, θ = 1/2 shifted byl(1 − 2l).

Here we are using the Klugman, Panjer, Willmot parameterization sof(t; α, θ) =

(t/θ)αe−t/θ/tΓ(α). It is easy to checkL(l) has meanl, constant coefficient of

variation 1 and skewness1/l, since the skewness of a gammaα, θ is 2/
√

α. I is

given by the incomplete gamma function,I(l, k) = Γ(4l2, 4l2 + 2k), which does

not satisfy the assumptions of Lemma 1, soL(l) is not homogeneous. The reason

is clear: the familyL(l) changes shape withl and so cannot be homogeneous.

Taking this a step further, it is possible to construct a family all of whose higher

cumulants (coefficient of variation, skewness, kurtosis, etc.) are independent of

the mean, just as they would be for a homogeneous family, but which nevertheless

fails to be homogeneous.

5.3 Aggregate Distributions are Inhomogeneous

The central distributions of insurance, compound Poisson and mixed compound

Poisson distributions are inhomogeneous, because the coefficient of variation de-

pends on the mean.

Let L = R1 + · · ·RN where theRi are independent, identically distributed

severities andN is a frequency distribution with meann. Increasing expected
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losses in this model involves increasingn. SupposeN has contagionc, so, as

suggested by Heckman and Meyers (1983),Var(N) = n(1 + cn). Then

CV(L)2 =
CV(R)2

n
+

1

n
+ c

is clearly not independent ofn. ThusL does not satisfy the homogeneity as-

sumption: the aggregate loss distribution changes shape asn increases. This is

illustrated in the figure below, which shows six aggregate loss distributions with

the same severity distribution but different claim counts, indicated by “CC=20”

for n = 20, and so forth. The individual densities have been scaled so that if the

family were homogeneous then all the densities would be identical and only one

line would appear in the plot.

If aggregate distributions can be approximated by various families of para-

metric distributions, and if those families are homogeneous, does this result really

matter? The answer is an emphatic “yes”. The above example shows that in the

real world, where insurers grow by adding discrete insureds, the “adds-up” results

do not hold because the way the aggregate distribution changes shape forces pa-

rameters other than the scale parameter to change as the mean increases, and thus

homogeneity is lost.
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Aggregate Distributions are Not Homogeneous
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6 Inhomogeneity is Material

In this section we will discuss how the Myers Read formula is likely to be ap-

plied in practice, and what we would intuitively expect the formula to show for

an insurance portfolio. Then we will extend the examples given in the original

paper to allow for inhomogeneity. The extended examples show that the inhomo-

geneity inherent in a typical portfolio of property casualty risks is large enough to

invalidate the Myers and Read allocation formula.

6.1 Use of the Myers and Read allocation in pricing

Myers and Read’s paper tries to explain how capital should be allocated across

a company’s different lines of business. They point out that “because surplus is

costly, competitive premiums...depend on total surplus requirements and on their
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allocation to lines of insurance.” They are expecting capital allocation to be used

in the context of measuring profitability and setting targets for divisions or lines

within a company. Internal company specific allocations are irrelevant to deter-

mining market prices. Knowing how the formula will be applied helps calibrate

the scale for our examples of inhomogeneity. Clearly the relevant scale is much

smaller than the whole industry; only 7.5% of US property casualty company

groups had total gross premium greater than $1B in 2002, whereas over 84% had

total gross premium less than $300M. An allocation of capital within a company

will likely be on a scale of $10-100M. We will give examples to show that inho-

mogeneity is very material at this scale.

6.2 Heuristics

Let L(l) be a smooth family of random variables withE(L(l)) = l. Let F (t, l) =

Pr(L(l) < t) be the distribution function ofL(l) and f(t, l) = ∂F/∂t be its

density. The expected default value, with capital ratios, is defined as

D(l) =

∫ ∞

l(1+s)

(t− l(1 + s))f(t, l)dt.

Note thatl(1 + s) represents total assets:l from the loss andls from capital. In

a more sophisticated model we could consider profit in the premium; here we

simply subsume it into the constants.

By Proposition 1 we know

l
∂D

∂l
= D

if and only ifL(l) is a homogeneous family, which is then equivalent to the Myers-

Read adds-up result.
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A homogeneous family offers no diversification benefit as the mean increases.

Property casualty insurance is based on diversification, and the resulting inhomo-

geneity in a portfolio of insurance risks means that the relative riskiness of the

portfolio decreases as expected losses increase. Since a lower risk portfolio has a

lower expected default, one would expect that

l
∂D

∂l
< D (9)

for an inhomogeneous insurance portfolio. Instead of “adds-up” we expect to see

a “sub-adds-up” result for inhomogeneous distributions which exhibit decreasing

coefficient of variation with expected losses, such as aggregate distributions.

Meyers, Klinker and Lalonde (2003) introduce the heterogeneity multiplier,

which is a constantλ defined so that

λl
∂D

∂l
= D.

They shows thatλ is typically greater than 1 (as expected) and find a value close

to 1.6 in some empirical examples.

If L is homogeneous then, for all marginal capital ratioss > 0,

l
∂D

∂l
= D ≥ 0.

However, intuitively, one would expect that for a large enough capital ratios it

should be possible for the extra capital associated with writing more business to

more than offset the extra risk. This would imply that

l
∂D

∂l
< 0

should be possible for sufficiently larges. This is another difference between

homogeneous and inhomogeneous families.
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6.3 Extended Myers Read Examples

We now extend the examples given in Myers Read to show the impact of inho-

mogeneity on the adds-up result. We will focus on the lognormal examples given

in Table 2 (page 560) of the original paper and will follow the same notation as

far as possible. There are three lines of insuranceLi, i = 1, 2, 3 with expected

lossesE(Li) = li. Let l =
∑

li and letxi = li/l be the proportion of losses from

line i. Letρij be the correlation betweenlog(Li) andlog(Lj). As Myers and Read

point out, if the line-by-line loss volatilities are not large then the volatility of total

losses is closely approximated by

σ2
L =

∑
i

∑
j

xixjρijσiσj

whereσi is the volatility (coefficient of variation) of linei. If σV is the volatility

of assetsV then the correlation between log loss and log assets is approximately

σLV =
∑

i

xiρiV σiσV

whereρiV is the correlation between log assets and log linei losses. Lastly, letsi

be the marginal level of capital for linei per dollar of losses and lets =
∑

i xisi

be the weighted average capital ratio.

Let D be the value of the default option,d = D/l and

di =
∂D

∂li
.

An easy computation shows

di = d +
∂d

∂xi

.
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Myers and Read Appendix 2 shows that

d = N(z)− (1 + s)N(z − σ) (10)

where

z =
− log(1 + s) + σ2/2

σ

and

σ2 = σ2
L + σ2

V − 2σLV . (11)

They also compute
∂d

∂xi

=
∂d

∂s

∂s

∂xi

+
∂d

∂σ

∂σ

∂xi

.

Both∂d/∂s and∂d/∂σ can be computed from Equation (10). Next, sinceli = xil

∂s

∂xi

=
∂s

∂li

∂li
∂xi

= (− 1

l2

∑
i

lisi +
si

l
)l = −s + si.

Finally, Myers and Read compute∂σ/∂xi by noting

∂σ

∂xi

=
∂σ

∂li

∂li
∂xi

= l
∂σ

∂li
,

and then differentiating Equation (11) with respect toli to get

σ
∂σ

∂li
= σL

∂σL

∂li
− ∂σLV

∂li

=
∑

k

lk
l2

ρikσkσi −
1

l

∑
jk

ljlk
l2

ρijσjσk

−

(
ρiV σiσV

l
−
∑

j

lj
l2

ρiV σiσV

)
=

(
σiL − σ2

L − (σiV − σLV )
)
/l. (12)
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Here the first term in the middle line definesσiL and the last two terms defineσiV

andσLV respectively. This derivation has used the fact that∂σi/∂li = 0 for each

i. Combining these equations gives

di = d +
∂d

∂s
(si − s) +

∂d

∂σ

1

σ

(
(σiL − σ2

L)− (σiV − σLV )
)
. (13)

We have now defined all the expressions needed to understand Myers and Read’s

Table 2, which is reproduced here in Tables 1, 2 and 3.

Table 1: Base Case Parameters

Correlations
Item Amt xi σ Line 1 Line 2 Line 3 Cov / L Cov / V
Line 1 100 33.3% 10.00% 1.000 0.500 0.500 0.0092 -0.0030
Line 2 100 33.3% 15.00% 0.500 1.000 0.500 0.0150 -0.0045
Line 3 100 33.3% 20.00% 0.500 0.500 1.000 0.0217 -0.0060
Liab L 300 100.0% 12.36% 0.742 0.809 0.876 0.0153 -0.0045
Assets 450 150.0% 15.00% -0.200 -0.200 -0.200 0.0225
Surplus 150 50.0%

Table 2: Base Caseσ andd

σ 21.62817%
d 0.311220%
Delta -0.0237
Vega 0.0838

Table 1 summarizes the input parameters. Table 2 shows the resulting values

for σ andd. The entries in Table 3 are determined using Equation (13) by setting

si = s and solving fordi in the first column and settingdi = d and solving for

si in the second. Weighting the individual line values byxi recovers the adds-up

result; the total in the first column is exactlyd and in the second is exactlys.
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Table 3: Homogeneous Case: “Adds-up” Holds

Line Def Val/Liab Surp / Liab
Line 1 0.016% 37.55%
Line 2 0.300% 49.55%
Line 3 0.617% 62.90%
Total 0.311% 50.00%

In an inhomogeneous family the volatility varies with expected losses, soσi =

σi(li), and we need to add∂σi/∂li terms to Equation (12). The additional terms

are ∑
j

lilj
l2

ρijσj
∂σi

∂li
− li

l
ρiV σV

∂σi

∂li
.

Combining these terms with Equation (13) we get the following equation fordi

di = d +
∂d

∂s
(si − s) +

∂d

∂σ

1

σ

(
(σiL − σ2

L)− (σiV − σLV )
)

+
∂d

∂σ

∂σi

∂li

1

σ

(∑
j

lilj
l

ρijσj − liρiV σV

)
.

(14)

We now have to determine howσi is likely to vary with li in a real world

portfolio. To do this, we look at a realistic aggregate loss distribution in order to

determineσi(li) and then to approximate the actual distributions with a family of

lognormals. If we use a compound Poisson model whereL = R1 + · · ·+ RN , N

Poisson with meann then the volatility (coefficient of variation) ofL is

σ(l) =

√
x(γ2 + 1)

l

wherex = E(R) is severity,γ is the coefficient of variation ofR, andl = E(L) =

nx. Hence
∂σ

∂l
= −1

2

√
x(γ2 + 1)

l3
.
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More generally, ifN is a negative binomial (gamma mixture of Poisson frequen-

cies) withVar(N) = n(1 + cn) then the volatility ofL is

σ(l) =

√
x(γ2 + 1)

l
+ c

and so
∂σ

∂l
= −x(γ2 + 1)

2l2σ(l)
.

Before presenting examples with inhomogeneous losses we have to determine

reasonable values forx andγ. Since the examples use expected losses of 100, the

expected claim count for each line will be100/x. We consider three cases. The

first example calibrates expected claim counts to correspond to a book of approx-

imately $300M casualty business with an average severity of $4,688 per claim.

This is a scale appropriate to a large division or whole medium sized company.

The second example uses a similar overall scale but a higher severity and hence

greater inhomogeneity. The third example calibrates to a $3B total loss; this cor-

responds to the largest of companies and we expect the effect of inhomogeneity to

be less material. Only 3% of US property casualty companies have one or more

lines with more than $1B of gross premium.

In all three examplesx andγ are chosen to approximate a real line of business

and thenc is determined so that the volatility of each line is the same as shown

in Table 1. This means the values ofd, Delta and Vega are as shown in Table

2 in all three cases, because these quantities do not depend on∂σi/∂li. Only di

andsi which are shown in Table 3 vary between the examples. The values for

the first example are shown in Table 4. Line 1 roughly corresponds to $100M
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expected loss for workers compensation. It has an average of 50,000 claims, each

with average severity $2,000 and severity volatility of 20. Line 2 corresponds to

a book of general liability policies with $1M limits, and Line 3 approximates a

book of medium sized property risks. The contagion valuesc have been chosen so

that the implied line volatilities are as shown in Table 1, viz. 0.10, 0.15, and 0.2.

(These volatilities are lower than one would expect to see in real portfolios, but

are used to facilitate comparison with the original paper.) The by-line defaults are

shown under “Default Value”; the weighted average default is 0.1667% less than

half d = 0.311%. The last column shows the individual line surplus allocations;

again, the weighted average allocated capital is 43.9% less than the actual 50%.

This shows that we recover sub-additivity, as expected from Equation (9).

To gauge the magnitude of the differences between Table 3 and 4 on pricing,

suppose the company desired a 10% return on allocated surplus from underwriting

cash flows. Table 3 would give profit targets of 3.8%, 5.0% and 6.3% for lines 1,

2 and 3, whereas Table 4 would give 3.0%, 4.5% and 5.7%. These differences

are material relative to the inter-line differences. As we have already observed,

the total target in Table 4 would fall short because of the failure of targets to

add-up. The targets in Table 4 could be re-scaled, but that would introduce an

arbitrary choice that the canonical Myers Read decomposition specifically sought

to remove.

Table 5 also uses $100M expected losses by line, but increases the severities

by line—thereby increasing the inhomogeneity. This type of book, while more

extreme than the first example, is still a realistic example. The failure of the adds-

up theorem is more pronounced in this case, with the surplus allocation total being
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Table 4: Average Severity Lines

Line E(N) x = E(X) c γ Default Value Surplus
Line 1 50,000.0 2,000.0 0.002 20.000 -0.1727% 29.5740%
Line 2 4,000.0 25,000.0 0.016 5.000 0.1913% 44.9394%
Line 3 10,000.0 10,000.0 0.030 10.000 0.4815% 57.1892%
Total 64,000.0 4,687.5 0.1667% 43.9008%

Table 5: Higher Severity Lines

Line E(N) x = E(X) c γ Default Value Surplus
Line 1 5,000.0 20,000.0 0.005 5.000 -0.1062% 32.3795%
Line 2 2,000.0 50,000.0 0.010 5.000 0.0822% 40.3330%
Line 3 10,000.0 10,000.0 0.004 19.000 0.1318% 42.4277%
Total 17,000.0 17,647.1 0.0359% 38.3801%

24% lower than required. Line 1 is closer to homogeneous becauseγ is lower; line

3 is less homogeneous becauseγ is higher. These observations are reflected in the

differences in surplus allocation.

Table 6 uses $1B expected losses by line, generating over 3M claim counts.

Here, the results are very close to homogeneous, as expected. The default value

is 0.307%, very close to the homogeneous 0.311%, and the surplus total is 49.8%

vs. 50%. According to 2002 statutory annual statements, only 3% companies

reported one or more line of business with more than $1B gross earned premium.

Thus such large company/lines are the exception, and to the extent Myers Read

is used for internal capital allocation, the scale will generally be at or below that

used in Tables 4 and 5.
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Table 6: Large Company Example

Line E(N) x = E(X) c γ Def. Value Surplus
Line 1 1,000,000.0 1000.0 0.010 10.000 0.0139% 37.4523%
Line 2 1,000,000.0 1000.0 0.022 15.000 0.2967% 49.3856%
Line 3 1,000,000.0 1000.0 0.040 20.000 0.6115% 62.6747%
Total 3,000,000.0 1000.0 0.3074% 49.8375%

7 Conclusions

In this paper we have explained the importance of the homogeneity assumption

in the derivation of Myers and Read’s “adds-up” result. Proposition 1 shows the

assumption is necessary as well as sufficient. We have shown that aggregate loss

distributions are not homogeneous, and given examples to show that the inhomo-

geneity in a realistically sized loss portfolio will cause the adds-up result to mate-

rially fail. Thus the Myers Read allocation formula is not the panacea it seemed

and it will find little practical application in insurance companies. The methods

introduced by Myers and Read can, however, be usefully applied to manage a

company using constrained optimization, and maximizing return on marginal sur-

plus. This is a more fruitful approach than trying to allocate capital, and it is

discussed further in Meyers et al. (2003).

Appendix 1: Two Technical Lemmas

Lemma 1 Letf : Rn → R be a differentiable function ofn variables. Then

x1
∂f

∂x1

+ x2
∂f

∂x2

+ · · ·+ xn
∂f

∂xn

= 0

if and only iff is constant along rays from the origin.
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Note: Iff is constant on lines through the origin thenf is calledhomogeneous.

The lemma requires only thatf be constant along rays from the origin; along a

line f can change as the line passes through the origin. The functionx 7→ x/|x| is

a good example of what can occur: it changes value from+1 to−1 at zero. Iff

is constant along rays from the origin, then in half spaces through the originf can

be expressed as a function ofxi/xj, i = 1, . . . , n whenxj 6= 0, for eachj. In our

applications of this lemma, the domain off is the positive quadrant, and hence

there is no difference between lines through the origin and rays from the origin in

the domain. I would like to thank Christopher Monsour for pointing this out to

me.

Proof Sufficiency: iff is constant along rays through the origin, then by the note

we can assume locally thatf(x1, . . . , xn) = f̃(x1/xn, . . . , xn−1/xn) for some

function f̃ of n− 1 variables. An easy calculation shows

x1
∂f

∂x1

+ · · ·+ xn
∂f

∂xn

=
x1

xn

f̃1 + · · ·+ xn−1

xn

f̃n−1 − xn(
x1

x2
n

f̃1 + · · ·+ xn−1

x2
n

f̃n−1)

= 0,

wheref̃i = ∂f̃(x1, . . . , xn−1)/∂xi.

Necessity: Letv = (x1, . . . , xn) be a differentiable curve, sov = v(t) : R →

Rn, with dv/dt = v. This meansv is equal to its own tangent vector for eacht.

By separating variables it is easy to see thatv is a line through the origin. (It has

the formet(k1, . . . , kn) for constants of integrationki.) Then, by the chain-rule

d

dt
f(v(t)) = x1

∂f

∂x1

+ · · ·+ xn
∂f

∂xn

= 0,
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by assumption, so the directional derivative off along each half of any such line

v is constant, i.e.f is constant along rays from the origin, as required. Sincev

never reaches the origin, we cannot assert thatf is constant along lines through

the origin. �

Lemma 2 Letf : Rn → R be a differentiable function ofn variables. Then,

x1
∂f

∂x1

+ · · ·+ xn
∂f

∂xn

= f (15)

on a half-space wherex1 > 0 (resp. x1 < 0) if and only if there exists a differ-

entiable functionf̃ so thatf(x1, . . . , xn) = x1f̃(x2/x1, . . . , xn/x1) on that half

space, and similarly forx2, . . . , xn.

Proof If f(x1, . . . , xn) = x1f̃(x2/x1, . . . , xn/x1) then, using subscripts oñf to

denote partial derivatives,

x1
∂f

∂x1

+ · · ·+ xn
∂f

∂xn

=

(
x1f̃ −

n∑
j=2

xj f̃j−1

)
+

n∑
j=2

xj f̃j−1

= f.

The first sum comes from the partial derivative with respect tox1 and the second

sum comes from all the remaining partials.

On the other hand, supposef satisfies Equation (15) and letf̃(t, s2, . . . , sn) =

f(t, s2t, . . . , snt)/t wheret > 0 (resp.t < 0). We must show̃f is independent of

t. Differentiating

∂

∂t

(
f(t, s2t, . . . , snt)

t

)
= − 1

t2
f +

1

t

(
∂f

∂x1

+
n∑

j=2

sj
∂f

∂xj

)
= 0

and the result follows.�
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