Random variables can converge in several different ways. Here is a brief introduction, highlighting examples of the different behaviors that can occur. Many of the examples below are taken from Stoyanov (2013).
There are at least six different notions of convergence for random variables.
Pointwise convergence is the strongest notion, and it obviously implies almost sure convergence. Almost sure convergence implies convergence in probability, which implies convergence in distribution. \(L^1\) convergence implies convergence in probability. The figure lays out the relationships schematically. \(L^p\) convergence implies \(L^r\) convergence for \(p\ge r\ge 1\). sup-norm convergence can be regarded as a special case of \(L^p\) as \(p\to\infty\). Notice that since probability spaces have total probability (measure) 1, we are concerned about large values of \(X\) only . Random variables never fail to be integrable because of small values of \(X\). (On \([1,\infty)\) the variable \(X(x)=1/x\) is divergent, but \([1,\infty)\) does not have finite measure.)
Convergence in distribution is special to probability theory. It is equivalent to a number of other conditions, spelled out in the Portmanteau theorem, Billingsley (1986). In particular, on a standard probability space, convergence in distribution is equivalent to \(\mathsf{Pr}(X_n\in A)\to\mathsf{Pr}(X\in A)\) for all events \(A\) whose boundary has probability zero and to \(\mathsf E[g(X_n)]\to \mathsf E[g(x)]\) for all bounded, continuous functions \(g\). The last condition partially explains the condition for convergence in distribution using Fourier transforms (moment generating functions), since \(g(x)=e^{2\pi i x\theta}\) is bounded for fixed \(\theta\).
The relationships between the different modes of convergence are best understood by considering examples.
posted 2022-01-20 | tags: mathematics, probability