Extension
\(\forall x\ \forall y\ \forall z\ (z \in x \leftrightarrow z \in y)\rightarrow x=y\)Foundation
\(\forall x[\exists y(y\in x)\rightarrow \exists y(y\in x \wedge \neg\exists z(z\in x \wedge z\in y))]\)Pairing
\(\forall a\forall b\exists x[a\in x \wedge b\in x]\)Union
\(\forall X\exists U[\forall Y\forall x(x\in Y \wedge Y \in X)\rightarrow x\in U]\)Power
\(\forall X\exists P\forall z[z\subset X\rightarrow z\in P]\)Infinity
\(\exists x[\forall z(z=\emptyset)\rightarrow z\in x \wedge \forall x\in x\forall z(z=S(x)\rightarrow z\in x)]\)Separation
\(\forall x\forall p\exists y[\forall u(u\in y\leftrightarrow(u\in x\wedge \phi(u,p)))]\)Replacement
\(\forall A\forall p[\forall x\in A\exists !y\phi(x, y, p)\rightarrow\exists Y\forall x\in A\exists y\in Y\phi(x, y,p)]\)Choice
\(\forall X[\forall x\in X(x\not=\emptyset) \wedge \forall x\in X\forall y\in X(x=y\vee x\cap y=\emptyset)]\rightarrow\exists S\forall x\in X\exists !z(z\in S\wedge z\in x)\)posted 2022-03-11 | tags: set theory