import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
from great import test_df
def all_fonts():
return set([f.name for f in mpl.font_manager.fontManager.ttflist])
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.colors import LightSource
= plt.figure()
fig = fig.gca(projection='3d')
ax
# Test data: Matlab `peaks()`
= np.mgrid[-3:3:150j,-3:3:150j]
x, y = 3*(1 - x)**2 * np.exp(-x**2 - (y + 1)**2) \
z - 10*(x/5 - x**3 - y**5)*np.exp(-x**2 - y**2) \
- 1./3*np.exp(-(x + 1)**2 - y**2)
# create light source object.
= LightSource(azdeg=0, altdeg=65)
ls # shade data, creating an rgb array.
= ls.shade(z, plt.cm.RdYlBu)
rgb = ax.plot_surface(x, y, z, rstride=1, cstride=1, linewidth=0,
surf =False, facecolors=rgb) antialiased
agg
= test_df()
df 'D'] = np.random.choice(list('ABCDE'), len(df))
df[# name=(col, func)
'D').agg(min_A=('A', np.min), one=('B', lambda x : 1))
df.groupby(
# col: ((name, func), ...)
'D').agg({'A':[['AMean', np.mean], ['ASum', np.sum]],
df.groupby('B':[['BMean', np.mean], ['BMin', np.min]]})
posted 2022-01-28 | tags: python, programming, code, snippets